ATA 61-05-04
E-504

BETRIEBS- UND EINBAUANWEISUNG
OPERATION AND INSTALLATION MANUAL

REVERSIERBARE
HYDRAULISCHE VERSTELLPROPELLE

REVERSIBLE
HYDRAULICALLY CONTROLLED
VARIABLE PITCH PROPELLER
(CONSTANT SPEED PROPELLER)

MTV-5-()-R (M)
MTV-6-()-R (M)
MTV-9-()-R (M)
MTV-12-()-R (M)
MTV-14-()-R (M)
MTV-15-()-R(M)
MTV-16-()-R (M)
MTV-21-()-R(M)
MTV-22-()-R (M)
MTV-25-()-R (M)
MTV-27-()-R (M)
MTV-37-()-R (M)
Warning

People who fly should recognize that various types of risks are involved; and they should take all precautions to minimize them, since they can not be eliminated entirely. The propeller is a vital component of the aircraft. A mechanical failure could cause a forced landing or create vibrations sufficiently severe to damage the aircraft.

Propellers are subject to constant vibration stresses from the engine and airstream, which are added to high bending and centrifugal stresses.

Before a propeller is certified as being safe to operate on an airplane, an adequate margin of safety must be demonstrated. Even though every precaution is taken in the design and manufacture of a propeller, history has revealed rare instances of failures, particularly of the fatigue type.

It is essential that the propeller be properly maintained according to the recommended service procedures and a close watch be exercised to detect impending problems before they become serious. Any grease leakage (according to chapters 5, 6 and 7) or oil leakage, unusual vibration, or unusual operation should be investigated and repaired as it could be a warning that something serious is wrong.

As a fellow pilot, I urge you to read this Manual thoroughly. It contains a wealth of information about your new propeller.

The propeller is among the most reliable components of your airplane. It is also among the most critical to flight safety. It therefore deserves the care and maintenance called for in this Manual. Please give it your attention, especially the section dealing with Inspections and Checks.

Thank you for choosing a MT-Propeller. Properly maintained it will give you many years of reliable service.

Gerd R. Mühlbauer
President
MT-Propeller Entwicklung GmbH
Inhaltsverzeichnis: Seite
Liste der eingearbeiteten Änderungen 2
Verzeichnis der gültigen Seiten 3
MT-Propeller Lufttüchtigkeitsinformation 3-1
1. Allgemeines 4
2. Kennzeichnung 9
3. Leistungsdaten 11
4. Bau- und Funktionsbeschreibung 12
5. Einbauanweisung und Betrieb 17
6. Kontrollen 23
7. Wartung 32
8. Störungen und deren Beseitigung 33
9. Versand und Lagerung 40
10. Abschnitt Lufttüchtigkeitsbeschränkungen 41
11. Spezialwerkzeug 42
12. Propellerzeichnungen: Propeller MTV-5 mit Segelstellung 43
Propeller MTV-5 ohne Segelstellung 44
Propeller MTV-6 ohne Segelstellung 44-1
Propeller MTV-9 mit Segelstellung 45
Propeller MTV-9 ohne Segelstellung 46
Propeller MTV-9 mit Segelstellung 46-1
Propeller MTV-12 mit Segelstellung 47
Propeller MTV-12 ohne Segelstellung 48
Propeller MTV-14 mit Segelstellung 49
Propeller MTV-14 ohne Segelstellung 50
Propeller MTV-15 ohne Segelstellung 50-1
Propeller MTV-16 mit Segelstellung 51
Propeller MTV-16 ohne Segelstellung 52
Propeller MTV-21 ohne Segelstellung 53
Propeller MTV-25-1 ohne Segelstellung 54
Propeller MTV-25-2 mit Segelstellung 55
Propeller MTV-25-2 ohne Segelstellung 56
Propeller MTV-27 mit Segelstellung 57
Propeller MTV-37 mit Segelstellung 58

Liste der eingearbeiteten Änderungen:

<table>
<thead>
<tr>
<th>Lfd.Nr.</th>
<th>Ausgabedatum</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.08.1996</td>
<td>alle</td>
</tr>
<tr>
<td>2</td>
<td>21.05.1997</td>
<td>1, 2, 3, 4, 5, 8, 18, 43, 44, 45, 46</td>
</tr>
<tr>
<td>3</td>
<td>12.12.1997</td>
<td>alle</td>
</tr>
<tr>
<td>4</td>
<td>09.02.1998</td>
<td>1, 2, 3, 11, 13, 20, 26, 33, 45-1, 45-2, 45-3</td>
</tr>
<tr>
<td>5</td>
<td>30.03.1998</td>
<td>2, 3, 32-1, 32-2, 32-3</td>
</tr>
<tr>
<td>6</td>
<td>29.06.1998</td>
<td>1, 2, 3, 11, 42-1, 42-2</td>
</tr>
<tr>
<td>7</td>
<td>14.07.1998</td>
<td>1, 2, 3, 9, 10, 11, 45-1, 45-1-1</td>
</tr>
<tr>
<td>8</td>
<td>19.10.1998</td>
<td>2, 3, 5, 10, 19, 25</td>
</tr>
<tr>
<td>9</td>
<td>01.02.1999</td>
<td>2, 3, 32</td>
</tr>
<tr>
<td>10</td>
<td>23.03.1999</td>
<td>1, 2, 3, 11, 44-1, 45, 46-1, 46-2</td>
</tr>
<tr>
<td>11</td>
<td>21.10.1999</td>
<td>0-1, 2, 3, 6, 8, 11, 12, 13, 14, 15, 17, 17-1, 18, 19, 20, 20-1, 21, 22, 23, 29, 30, 31, 32-1, 32-2, 36-1, 37, 38, 39,</td>
</tr>
<tr>
<td>12</td>
<td>17.11.1999</td>
<td>2, 3, 20, 20-1, 22, 34, 36, 37</td>
</tr>
<tr>
<td>13</td>
<td>12.04.2000</td>
<td>1, 2, 3, 6, 11, 13, 18, 20, 31, 33, 45,4</td>
</tr>
<tr>
<td>14</td>
<td>12.06.2002</td>
<td>1, 2, 3, 11, 17-1, 17-2, 43-57</td>
</tr>
</tbody>
</table>

List of Revisions, inserted:

<table>
<thead>
<tr>
<th>No.</th>
<th>Date of issue</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08/30/1996</td>
<td>all</td>
</tr>
<tr>
<td>1</td>
<td>05/21/1997</td>
<td>1, 2, 3, 4, 5, 8, 18, 43, 44, 45, 46</td>
</tr>
<tr>
<td>3</td>
<td>1997/12/12</td>
<td>all</td>
</tr>
<tr>
<td>4</td>
<td>09/02/1998</td>
<td>1, 2, 3, 11, 13, 20, 26, 33, 45-1, 45-2, 45-3</td>
</tr>
<tr>
<td>5</td>
<td>03/30/1998</td>
<td>2, 3, 32-1, 32-2, 32-3</td>
</tr>
<tr>
<td>6</td>
<td>06/29/1998</td>
<td>1, 2, 3, 11, 42-1, 42-2</td>
</tr>
<tr>
<td>7</td>
<td>07/14/1998</td>
<td>1, 2, 3, 9, 10, 11, 45-1, 45-1-1</td>
</tr>
<tr>
<td>8</td>
<td>10/19/1998</td>
<td>2, 3, 5, 10, 19, 25</td>
</tr>
<tr>
<td>9</td>
<td>01/02/1999</td>
<td>2, 3, 32</td>
</tr>
<tr>
<td>10</td>
<td>03/23/1999</td>
<td>1, 2, 3, 11, 44-1, 45, 46-1, 46-2</td>
</tr>
<tr>
<td>11</td>
<td>1999/10/21</td>
<td>0-1, 2, 3; 6, 8, 11, 12, 13, 14, 15, 17, 17-1, 18, 19, 20, 20-1, 21, 22, 23, 29, 30, 31, 32-1, 32-2, 36-1, 37, 38, 39,</td>
</tr>
<tr>
<td>12</td>
<td>11/17/1999</td>
<td>2, 3, 20, 20-1, 22, 34, 36, 37</td>
</tr>
<tr>
<td>13</td>
<td>04/12/2000</td>
<td>1, 2, 3, 6, 11, 13, 18, 20, 31, 33, 45,4</td>
</tr>
<tr>
<td>14</td>
<td>06/12/2002</td>
<td>1, 2, 3, 11, 17-1, 17-2, 43-57</td>
</tr>
</tbody>
</table>

Seite 2
E-504

Liste der eingearbeiteten Änderungen: (Fortsetzung)

<table>
<thead>
<tr>
<th>Lfd. Nr.</th>
<th>Ausgabedatum</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>26.05.2004</td>
<td>2-1, 3, 32-1, 32-2</td>
</tr>
<tr>
<td>17</td>
<td>25.01.2005</td>
<td>2-1, 3, 17-1, 17-2, 17-3, 23, 23-1, 32, 32-0-1, 33-1, 34, 43 up to 56</td>
</tr>
<tr>
<td>18</td>
<td>20.04.2005</td>
<td>2-1, 3, 4, 22-1</td>
</tr>
<tr>
<td>19</td>
<td>30.06.2005</td>
<td>2-1, 3, 14, 17, 23-1, 23-2, 24, 28, 29, 29, 1</td>
</tr>
<tr>
<td>20</td>
<td>08.09.2005</td>
<td>2-1, 3, 12, 13, 15, 19, 20, 20-1, 20-2, 33, 33-1,</td>
</tr>
<tr>
<td>21</td>
<td>09.11.2005</td>
<td>2-1, 3, 17-1, 17-2, 17-3, 17-4, 17-5, 17-6, 20, 39</td>
</tr>
<tr>
<td>22</td>
<td>14.03.2006</td>
<td>2-1, 3, 5, 9, 30</td>
</tr>
<tr>
<td>23</td>
<td>10.07.2006</td>
<td>2-1, 3, 11, 18</td>
</tr>
<tr>
<td>24</td>
<td>03.04.2007</td>
<td>2-1, 3, 5, 6, 30,</td>
</tr>
<tr>
<td>25</td>
<td>18.09.2007</td>
<td>2-1, 3, 23-2, 24, 29-1, 29-2, 56</td>
</tr>
<tr>
<td>26</td>
<td>08.01.2008</td>
<td>2-1, 3, 4, 6, 7, 8, 20, 20-1, 20-2, 21, 21-1, 21-2, 21-3, 22, 39</td>
</tr>
<tr>
<td>27</td>
<td>08.10.2008</td>
<td>2-1, 3, 11, 18, 25, 40;</td>
</tr>
<tr>
<td>28</td>
<td>15.12.2009</td>
<td>2-1, 3, 23, 23-1;</td>
</tr>
<tr>
<td>29</td>
<td>09.02.2010</td>
<td>1, 2-1, 3, 17, 18, 18-1, 19, 20, 33-1, 39, 39-1, 50-1;</td>
</tr>
<tr>
<td>30</td>
<td>07.07.2010</td>
<td>1, 2-1, 3, 41, 42;</td>
</tr>
</tbody>
</table>

Seite 2-1 07.07.2010 Page 2-1 2010-07-07

List of Revisions, inserted: (to be continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Date of issue</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2004/05/26</td>
<td>2-1, 3, 32-1, 32-2</td>
</tr>
<tr>
<td>17</td>
<td>2005/01/25</td>
<td>2-1, 3, 17-1, 17-2, 17-3, 23, 23-1, 32, 32-0-1, 33-1, 34, 43 up to 56</td>
</tr>
<tr>
<td>18</td>
<td>2005/04/20</td>
<td>2-1, 3, 4, 22-1</td>
</tr>
<tr>
<td>19</td>
<td>2005/06/30</td>
<td>2-1, 3, 23-1, 23-2, 24, 28, 29, 29, 1</td>
</tr>
<tr>
<td>20</td>
<td>2005/09/08</td>
<td>2-1, 3, 12, 13, 15, 19, 20, 20-1, 20-2, 33, 33-1,</td>
</tr>
<tr>
<td>21</td>
<td>2005/11/09</td>
<td>2-1, 3, 17, 17-1, 17-2, 17-3, 17-4, 17-5, 17-6, 20, 39</td>
</tr>
<tr>
<td>22</td>
<td>2006/03/14</td>
<td>2-1, 3, 5, 9, 30</td>
</tr>
<tr>
<td>23</td>
<td>2006/07/10</td>
<td>2-1, 3, 11, 18</td>
</tr>
<tr>
<td>24</td>
<td>2007/04/03</td>
<td>2-1, 3, 5, 6, 30,</td>
</tr>
<tr>
<td>25</td>
<td>2007/09/18</td>
<td>2-1, 3, 23-2, 24, 29-1, 29-2, 56</td>
</tr>
<tr>
<td>26</td>
<td>2008/01/08</td>
<td>2-1, 3, 4, 6, 7, 8, 20, 20-1, 20-2, 21, 21-1, 21-2, 21-3, 22, 39</td>
</tr>
<tr>
<td>27</td>
<td>2008/10/08</td>
<td>2-1, 3, 11, 18, 25, 40;</td>
</tr>
<tr>
<td>28</td>
<td>2009/12/15</td>
<td>2-1, 3, 23, 23-1,</td>
</tr>
<tr>
<td>29</td>
<td>2010/02/09</td>
<td>11, 2-1, 3, 17, 18, 18-1, 19, 20, 33-1, 39, 39-1, 50-1;</td>
</tr>
<tr>
<td>30</td>
<td>2010-07-07</td>
<td>1, 2-1, 3, 41, 42;</td>
</tr>
<tr>
<td>Lfd.Nr.</td>
<td>Ausgabedatum</td>
<td>Seite</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>32</td>
<td>14.02.2012</td>
<td>2-2, 3, 17-1, 17-7, 17-8, 17-9, 17-10;</td>
</tr>
<tr>
<td>33</td>
<td>02.08.2012</td>
<td>2-2, 3, 17-1, 17-1-1, 17-10-1;</td>
</tr>
<tr>
<td>34</td>
<td>14.03.2013</td>
<td>2-2, 3, 12, 32-3;</td>
</tr>
<tr>
<td>35</td>
<td>08.03.2016</td>
<td>1, 2-2, 3, 3-1,5-1, 5-2, 6, 6-1, 17-10-1, 40;</td>
</tr>
<tr>
<td>36</td>
<td>17.01.2017</td>
<td>0-1, 2-2, 3, 17-10-1, 18, 18-1, 18-2, 18-3, 23-1, 23-2, 23-3, 32-0-1, 32-1, 32-2;</td>
</tr>
<tr>
<td>37</td>
<td>17.02.2017</td>
<td>2-2, 3, 18-1, 18-2, 19, 20, 20-1, 23-2, 33, 33-1;</td>
</tr>
<tr>
<td>38</td>
<td>30.11.2018</td>
<td>0, 1, 2-2, 3, 9, 58</td>
</tr>
<tr>
<td>39</td>
<td>26.02.2019</td>
<td>2-2, 3, 26;</td>
</tr>
</tbody>
</table>

List of Revisions: (to be continued)
<table>
<thead>
<tr>
<th>Seite</th>
<th>Ausgabe vom</th>
<th>Seite</th>
<th>Ausgabe vom</th>
<th>Seite</th>
<th>Ausgabe vom</th>
<th>Seite</th>
<th>Ausgabe vom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Date of Issue</td>
<td>Page</td>
<td>Date of Issue</td>
<td>Page</td>
<td>Date of Issue</td>
<td>Page</td>
<td>Date of Issue</td>
</tr>
<tr>
<td>0-1</td>
<td>17.01.2017</td>
<td>17-5</td>
<td>02.02.2012</td>
<td>29</td>
<td>30.06.2005</td>
<td>45</td>
<td>25.01.2005</td>
</tr>
<tr>
<td>3-1</td>
<td>08.03.2016</td>
<td>17-10</td>
<td>14.02.2012</td>
<td>31-2</td>
<td>24.11.2003</td>
<td>49</td>
<td>02.02.2012</td>
</tr>
<tr>
<td>4</td>
<td>08.01.2008</td>
<td>18</td>
<td>17.01.2017</td>
<td>31-3</td>
<td>24.11.2003</td>
<td>50</td>
<td>02.02.2012</td>
</tr>
<tr>
<td>5</td>
<td>02.02.2012</td>
<td>18-1</td>
<td>17.01.2017</td>
<td>31-4</td>
<td>24.11.2003</td>
<td>51</td>
<td>02.02.2012</td>
</tr>
<tr>
<td>5-1</td>
<td>08.03.2016</td>
<td>18-2</td>
<td>17.01.2017</td>
<td>32</td>
<td>25.01.2005</td>
<td>52</td>
<td>02.02.2012</td>
</tr>
<tr>
<td>5-2</td>
<td>08.03.2016</td>
<td>18-3</td>
<td>17.01.2017</td>
<td>32-0-1</td>
<td>17.01.2017</td>
<td>53</td>
<td>02.02.0212</td>
</tr>
<tr>
<td>6</td>
<td>08.03.2016</td>
<td>19</td>
<td>17.01.2017</td>
<td>32-1</td>
<td>17.01.2017</td>
<td>54</td>
<td>25.01.2005</td>
</tr>
<tr>
<td>6-1</td>
<td>08.03.2016</td>
<td>20</td>
<td>17.01.2017</td>
<td>32-2</td>
<td>17.01.2017</td>
<td>55</td>
<td>25.01.2005</td>
</tr>
<tr>
<td>7</td>
<td>08.01.2008</td>
<td>20-1</td>
<td>17.01.2017</td>
<td>32-3</td>
<td>14.03.2013</td>
<td>56</td>
<td>02.02.2012</td>
</tr>
<tr>
<td>8</td>
<td>08.01.2008</td>
<td>20-2</td>
<td>08.01.2008</td>
<td>33</td>
<td>17.02.2017</td>
<td>57</td>
<td>02.02.2012</td>
</tr>
<tr>
<td>9</td>
<td>30.11.2018</td>
<td>21</td>
<td>08.01.2008</td>
<td>33-1</td>
<td>17.02.2017</td>
<td>58</td>
<td>30.11.2018</td>
</tr>
<tr>
<td>10</td>
<td>19.10.1998</td>
<td>21-1</td>
<td>08.01.2008</td>
<td>34</td>
<td>25.01.2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>14.03.2013</td>
<td>21-3</td>
<td>08.01.2008</td>
<td>36</td>
<td>17.11.1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>08.09.2005</td>
<td>22</td>
<td>08.01.2008</td>
<td>37</td>
<td>17.11.1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>30.06.2005</td>
<td>23</td>
<td>27.01.2017</td>
<td>39</td>
<td>09.02.2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>08.09.2005</td>
<td>23-1</td>
<td>17.01.2017</td>
<td>39-1</td>
<td>02.02.2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>09.02.2010</td>
<td>23-3</td>
<td>17.01.2017</td>
<td>41</td>
<td>02.02.2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-1</td>
<td>02.08.2012</td>
<td>24</td>
<td>18.09.2007</td>
<td>41-1</td>
<td>02.02.2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-1-1</td>
<td>02.08.2012</td>
<td>25</td>
<td>08.10.2008</td>
<td>42</td>
<td>07.07.2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-4</td>
<td>02.02.2012</td>
<td>28</td>
<td>30.06.2005</td>
<td>44-1</td>
<td>02.02.2012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List of Effective Pages

Page 3

26.02.2019

Page 3

2019-02-26
MT-Propeller Lufttüchtigkeitsinformation

Im Falle von Änderungen zu den Informationen zur Aufrechterhaltung der Lufttüchtigkeit wird die entsprechende Änderungsliste gemäß Kapitel 10 dieses Handbuches korrigiert.

MT-Propeller Airworthiness Information

Every owner should stay in close contact with his MT-Propeller dealer or distributor and Authorized MT-Propeller Service Shop to obtain the latest information pertaining to his propeller and its installation. MT-Propeller takes a continuing interest in having the owner get the most efficient use of his propeller and keeping it in the best mechanical condition. Consequently, MT-Propeller from time to time issues Service Bulletins, Service Letters and Manuals relating to the propeller and its installation. Service Bulletins are of special importance and should be complied with promptly. These are sent to dealers, distributors and latest registered owners. Service Letters deal with products improvements and service hints pertaining to the propeller and its installation. These are sent to dealers, distributors and occasionally (at the factory’s discretion) to latest registered owners.

If an owner is not having his propeller serviced by an Authorized MT-Propeller Service Shop or MT-Propeller USA or MT-Propeller Germany, should periodically check with a MT-Propeller dealer or distributor or the MT-Propeller’s homepage to find out the latest information to keep his propeller up to date. The list of valid MT-Propeller manuals, service bulletins, AD’s and their latest revisions can be downloaded from the homepage of MT-PROPELLER (www.mt-propeller.com). Hardcopies can also be obtained from MT-Propeller Germany and MT-Propeller USA.

If any changes to the ICA have been made, the appropriate list of revisions according to Chapter 10 of this Manual will be revised.
1.0 ALLGEMEINES

1.0.1 Zweck dieses Handbuchs

Dieses Handbuch enthält Informationen bezüglich Betrieb, Einbau und Wartung einfach wirkender hydraulischer MT-Verstellpropeller mit Reverse.

Außer dem Propeller ist auch das Reglersystem in diesem Handbuch beschrieben.

1.0.2 Weitere verfügbare Unterlagen

Neben diesem Handbuch sind folgende Unterlagen für Reparatur und Überholung erforderlich:

<table>
<thead>
<tr>
<th>E-519</th>
<th>Propeller – Überholungshandbuch</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-508</td>
<td>Hydraulic Propeller Governor P-480-() – Serie</td>
</tr>
<tr>
<td>E-1046</td>
<td>Hydraulic Propeller Governor P-9()() - Serie</td>
</tr>
</tbody>
</table>

Für Propellerregler anderer Hersteller sowie Enteisungsanlagen ist das jeweilige Herstellerhandbuch zu verwenden.

1.0 GENERAL

1.0.1 Statement of Purpose

This publication provides operation, installation and line maintenance information for the MT hydraulically variable pitch propeller with single acting system and reverse.

In addition to the propeller assembly, the propeller governing system is addressed in this manual.

Installation, removal, operation and trouble shooting data is included in this publication. However, the airplane manufacturer's manuals should be used in addition to this information.

1.0.2 Additional Available Publications

In addition to this manual the following applicable publications should be used for repair and overhaul:

<table>
<thead>
<tr>
<th>E-519</th>
<th>Propeller – Overhaul Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-508</td>
<td>Hydraulic Propeller Governor P-480-() – Series</td>
</tr>
<tr>
<td>E-1046</td>
<td>Hydraulic Propeller Governor P-9()() – series</td>
</tr>
</tbody>
</table>

Consult the manufacturers' manuals for different propeller governor and de-icing systems (see Vendor Publications).
MT-Propeller Serviceunterlagen sind zu beziehen bei:

MT-Propeller Entwicklung GmbH
Propellerplatz 1
D-94348 Atting

Tel.: 09429/9409-0
Fax: 09429/8432
E-mail: sales@mt-propeller.com
Internet: www.mt-propeller.com

1.0.3 Technische Unterlagen von Fremdherstellern
(als zusätzliche Information!)

Manual No. ATA 30-60-02 (68-04-712-D) (Enteisung)

B.F. Goodrich De-Icing Systems
1555 Corporate Wood Parkway
Uniontown, Ohio 44685
USA

Telefon: 001 (330) 374-3040
Fax: 001 (330) 374-2290

Service Manual 830415 (Enteisung)

McCauley Accessory Division
3535 McCauley Drive
Vandalia, Ohio 45377
USA

For MT-Propeller service literature contact:

MT-Propeller Entwicklung GmbH
Propellerplatz 1
D - 94348 Atting
Germany

Tel.: XX49-9429-9409-0
Fax: XX49-9429-84 32
E-mail: sales@mt-propeller.com
Internet: www.mt-propeller.com

1.0.3 Vendor Publications
(for additional information only!)

Manual No. ATA 30-60-02 (68-04-712-D) (De-Icing Systems)

B.F. Goodrich De-Icing Systems
1555 Corporate Wood Parkway
Uniontown, Ohio 44685
USA

Telefon: 001 (330) 374-3040
Fax: 001 (330) 374-2290

Service Manual 830415 (De-Icing Systems)

McCauley Accessory Division
3535 McCauley Drive
Vandalia, Ohio 45377
USA
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBO</td>
<td>Time Between Overhaul</td>
</tr>
<tr>
<td>TT</td>
<td>Total Time</td>
</tr>
<tr>
<td>TSO</td>
<td>Time Since Overhaul</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per Minute</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>UNF</td>
<td>Unified National Fine Thread Series</td>
</tr>
<tr>
<td>TCDS</td>
<td>Type Certificate Data Sheet</td>
</tr>
<tr>
<td>PU</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>MAP</td>
<td>Manifold Pressure</td>
</tr>
<tr>
<td>AFM</td>
<td>Airplane Flight Manual</td>
</tr>
<tr>
<td>IPS</td>
<td>Inch per Second</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>ICA</td>
<td>Instruction for Continued Airworthiness</td>
</tr>
<tr>
<td>TSN</td>
<td>Time Since New</td>
</tr>
<tr>
<td>STC</td>
<td>Supplement Type Certificate</td>
</tr>
</tbody>
</table>

Note: Unter TSN / TBO versteht man die kumulierte Zeit zwischen dem Abheben und dem Landen des Flugzeuges (Betriebsstunden)

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBO</td>
<td>Time Between Overhaul</td>
</tr>
<tr>
<td>TT</td>
<td>Total Time</td>
</tr>
<tr>
<td>TSO</td>
<td>Time Since Overhaul</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per Minute</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>UNF</td>
<td>Unified National Fine Thread Series</td>
</tr>
<tr>
<td>TCDS</td>
<td>Type Certificate Data Sheet</td>
</tr>
<tr>
<td>PU</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>MAP</td>
<td>Manifold Pressure</td>
</tr>
<tr>
<td>AFM</td>
<td>Airplane Flight Manual</td>
</tr>
<tr>
<td>IPS</td>
<td>Inch per Second</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>ICA</td>
<td>Instruction for Continued Airworthiness</td>
</tr>
<tr>
<td>TSN</td>
<td>Time Since New</td>
</tr>
<tr>
<td>STC</td>
<td>Supplement Type Certificate</td>
</tr>
</tbody>
</table>

Note: TSN/TSO is considered as the time accumulated between aircraft lift off and aircraft touchdown, i.e., flight time.
Fachwörter und Definitionen:

<table>
<thead>
<tr>
<th>Fachwort</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blattwinkel</td>
<td>Gemessener Winkel des Blattprofils in Abhängigkeit des Propellerradius.</td>
</tr>
<tr>
<td>Constant Speed</td>
<td>Ein System, das die Motordrehzahl unabhängig vom Ladedruck konstant hält.</td>
</tr>
<tr>
<td>Riss:</td>
<td>Ein durch Überbeanspruchung entstandener Riss im Material.</td>
</tr>
<tr>
<td>Delamination</td>
<td>Ablösung einer Laminatschicht des Compositematerials.</td>
</tr>
<tr>
<td>Erosion</td>
<td>Abnutzung der Oberfläche</td>
</tr>
<tr>
<td>Feathering</td>
<td>Ein Propellerblatt das so gedreht wird, dass das Blattprofil parallel zur anströmenden Luft steht, um den Luftwiderstand zu reduzieren.</td>
</tr>
<tr>
<td>Überholung</td>
<td>Das periodische Zerlegen, Inspizieren, Reparieren und Zusammenbauen der Propellerbaugruppe, um eine fortwährende Lufttüchtigkeit zu gewährleisten.</td>
</tr>
<tr>
<td>Überdrehzahl</td>
<td>Zustand, bei dem die Drehzahl des Propellers oder des Motors eine maximale Grenze überschreitet.</td>
</tr>
<tr>
<td>Anstellwinkel</td>
<td>Winkel zwischen der Richtung der anströmenden Luft und der Profilsehne des Propellerblattes</td>
</tr>
<tr>
<td>Windmilling</td>
<td>Eine Rotation des Propellers, obwohl der Motor keine Leistung abgibt</td>
</tr>
</tbody>
</table>

Terms and Definitions:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade Angle</td>
<td>Measurement of blade airfoil location described by propeller rotation</td>
</tr>
<tr>
<td>Constant Speed</td>
<td>A propeller system which employs a governing device to maintain a selected engine RPM</td>
</tr>
<tr>
<td>Crack</td>
<td>Irregularly shaped separation within a material, sometimes visible as a narrow opening at the surface</td>
</tr>
<tr>
<td>Delamination</td>
<td>Internal separation of layers of a composite material</td>
</tr>
<tr>
<td>Erosion</td>
<td>Gradual wearing away or deterioration due to action of the elements</td>
</tr>
<tr>
<td>Feathering</td>
<td>A propeller with blades that may be positioned parallel to the relative wind, thus reducing aerodynamic drag</td>
</tr>
<tr>
<td>Overhaul</td>
<td>The periodic disassembly, inspection, repair, refinish and reassembly of a propeller assembly to maintain airworthiness</td>
</tr>
<tr>
<td>Overspeed</td>
<td>Condition in which the RPM of the propeller or engine exceeds predetermined maximum limits; the condition in which the engine or propeller RPM is higher than the RPM selected by the pilot through the propeller control lever</td>
</tr>
<tr>
<td>Pitch</td>
<td>Same as “Blade Angle”</td>
</tr>
<tr>
<td>Windmilling</td>
<td>The rotation of an aircraft propeller caused by air flowing through it while the engine is not producing power.</td>
</tr>
</tbody>
</table>
1.1 Definition von Lebensdauer und Wartung

1.1.1 Grundüberholung

Grundüberholung stellt einen periodischen Vorgang dar und beinhaltet folgende Schritte:
- Zerlegen
- Prüfung der Teile
- Überarbeiten der Teile
- Zusammenbau

Das Überholungsintervall ist abhängig von Betriebszeit und Kalenderzeit.

Beachte:
Eine Blattbeschädigung durch Fremdkörper oder Bodenberührung bei rotierendem Propeller erfordert in jedem Falle eine Überholung wenn es sich um eine Blattbeschädigung handelt, die das Limit einer In-Field-Reparatur übersteigt.

Eine Boden- oder Fremdkörperberührung bei nicht rotierendem Propeller erfordert keine Überholung; es bedarf lediglich einer Blattreparatur oder den Wechsel des Blattes.
Durch Bodenberührung oder Einwirkung eines Fremdkörper bei nicht rotierendem Propeller kann die Propellernabe nicht beschädigt werden, weshalb keine Überholung erforderlich ist.

In somit festgelegten Zeitabständen muß der Propeller vollständig zerlegt und auf Risse, Korrosion, Abnutzung sowie sonstige Auffälligkeiten untersucht werden. Wie vorgeschrieben, müssen bestimmte Teile nachgearbeitet oder ersetzt werden.

1.1.2 Reparatur
Eine Reparatur stellt eine Instandsetzung geringfügiger Schäden wie sie im Normalbetrieb auftreten können, dar. Diese Maßnahme wird nach Bedarf durchgeführt.
Siehe Service Letter 32 () letzte gültige Ausgabe!

1.1.2.1 Eine Reparatur ist keine Grundüberholung.

1.1.2.2 Die Größe des Schadens ist dafür maßgeblich, ob eine Reparatur ohne Grundüberholung durchgeführt werden kann. Eine Blattbeschädigung durch Bodenberührung erfordert immer eine Überholung.

Beachte!
Eine Blattbeschädigung durch Fremdkörper oder Bodenberührung bei rotierendem Propeller erfordert in jedem Falle eine Überholung wenn es sich um eine Blattbeschädigung handelt, die das Limit einer In-Field-Reparatur übersteigt.

Eine Boden- oder Fremdkörperberührung bei nicht rotierendem Propeller erfordert keine Überholung; es bedarf lediglich einer Blattreparatur oder den Wechsel des Blattes.
Durch Bodenberührung oder Einwirkung eines Fremdkörpers bei nicht rotierendem Propeller kann die Propellernabe nicht beschädigt werden, weshalb keine Überholung erforderlich ist.

1.1.2 Repair
Repair is correction of minor damage caused during normal operation. It is done on an irregular basis, as required.
See Service Letter 32 () latest issue!

1.1.2.1 A repair does not include an overhaul.

1.1.2.2 Amount, degree and extent of damage determines whether or not a propeller can be repaired without overhaul. A blade damage due to a ground strike always requires an overhaul.

Note:
A blade damage by a foreign object (FOD) or a ground strike with a rotating propeller always requires an Overhaul if the blade damage is beyond the limitation of an in-field repair.

A ground strike or a foreign object damage (FOD) with a non-rotating propeller does not require an overhaul, it only needs a blade repair or a blade exchange.

A ground strike or FOD with a non-rotating propeller cannot damage the propeller hub and therefore does not require an overhaul.
1.1.3 Betriebszeit

Die Betriebszeit wird ausgedrückt in "Gesamtbetriebszeit" (TSN) und in "Betriebszeit seit der Grundüberholung" (TSO).

Beide Daten sind erforderlich, um die Betriebszeit eines Bauteils zu definieren. Ein Bauteil kann lebensdauerbegrenzt sein, was bedeutet, daß es nach einer festgelegten Betriebszeit ersetzt werden muß. Teile, die eine Lebensdauerbegrenzung haben, sind in den Überholungshandbüchern Nr. E-519 aufgelistet.

Eine Grundüberholung führt dazu, daß das Bauteil oder die Bau- gruppe auf 0 Stunden TSO gebracht wird, die Gesamtbetriebszeit wird dabei jedoch nicht verändert.

1.2 Die hydraulisch verstell- und reversierbaren Propeller MTV-()-()-R (M) sind für Landflugzeuge mit verkürzter Landestrecke oder für Amphibienflugzeuge zur besseren Manövrierbarkeit entwickelt worden.

Bei allen Propellern ist Segelstellung als Option möglich.

1.1.3 Component Life

Component life is expressed in terms of total hours of service (TSN, Time Since New) and in terms of hours of service since overhaul (TSO, or Time Since Overhaul).

Both references are necessary in defining the life of the component. Occasionally a part may be "life limited", which means that it must be replaced after a specified period of use. Life limited parts are listed in Overhaul Manuals No. E-519.

Overhaul returns the component or assembly to zero hours TSO (Time Since Overhaul), but not to zero hours TT (Total Time).

1.2 The hydraulically variable reversible pitch propellers MTV-()-()-R (M) are designed for airplanes with decreased landing roll or for better manoeuverability of seaplanes.

The pitch change is conducted by a propeller governor with oil pressure to decrease pitch. Once an engine rotational speed is selected it will be held constant at variations of airspeed and power. Usually, this is called a constant speed propeller. Mechanical stops for low pitch and high pitch limit the pitch change travel. In case of the oil pressure of the governor to be lost, the blades return automatically to high pitch because counterweights are installed, enabling the pilot to continue the flight. The oil pressure is single acting. In this case, reverse is not possible.

With all propellers feathering is possible as an option.
Segelstellung ergibt sich durch Verstellen des Reglerhebels auf Segelstellung. Zusätzlich kann eine Sicherungseinrichtung im Propeller eingebaut sein, damit bei hohen Triebwerksdrehzahlen Segelstellung verhindert wird.

Es werden Holz-Composite-Blätter mit faserverstärktem Kunststoffmantel und Edelstahlkantenschutz verwendet. Diese ergeben geringstes Gewicht bei höchster Sicherheit gegen Ermüdungsbrüche durch Schwingungen.

Feathering is reached with propeller control being pulled to feathering. Additionally there could be a safety system integrated in the propeller, to avoid unintended feathering with the engine running at high rpm.

The pitch change into reverse acts via a magnetic valve on the governor. The valve is activated by a micro switch, which is installed on the power lever. Through the magnetic valve the operation pressure of the governor rises up twice a time and pushes the blades into beta modus. At the same time a yellow lamp in the cockpit illuminates, which informs the pilots that the propeller is in reverse modus. If the oil pressure fails, the blades will move into high pitch or feathering automatically. Additionally there is a centrifugal lock, which avoids that the propeller-blades move into reverse above approx. 1400 rpm.

Natural composite blades with fiber reinforced Epoxy cover and metal leading edge protection are used to minimize weight at the highest amount of safety against fatigue fractures due to vibrations.
E-504

2.0 KENNZEICHNUNG

2.1 Naben-Kennzeichnung

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT</td>
<td>V</td>
<td>-</td>
<td>27</td>
<td>-</td>
<td>1</td>
<td>E</td>
<td>-</td>
<td>C</td>
<td>-</td>
</tr>
</tbody>
</table>

- Kleinbuchstabe: Änderungen, die nicht die Austauschbarkeit betreffen.
- Großbuchstabe: Änderungen, die die Austauschbarkeit einschränken oder ausschließen.

9 (M) = Bremsstellungssystem Mühlbauer
8 R = Bremsstellung vorhanden
7 F = Segelstellung vorhanden

2.0 MODEL DESIGNATION

2.1 Hub-designation

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT</td>
<td>V</td>
<td>-</td>
<td>27</td>
<td>-</td>
<td>1</td>
<td>E</td>
<td>-</td>
<td>C</td>
<td>-</td>
</tr>
</tbody>
</table>

- Small Letter: Modifications, not affecting interchangeability.
- Capital Letter: Modifications, restricting or excluding the interchangeability.

9 (M) = Reverse system Mühlbauer
8 R = Reversing system installed
7 F = Feathering system installed

6 Letter designation counterweights
 blank = none or small counterweights mounted for pitch change moments towards low pitch
 C = counterweights mounted for pitch change moments towards high pitch/feathering

5 Code for propeller flange
 A = Motorglider engines bolt, 7/16"-20 UNF circle dia 80 mm
 B = SAE No. 2 mod. bolts 1/2"-20 UNF
 C = SAE No. 2 mod. bolts 7/16"-20 UNF
 D = ARP 502
 E = ARP 880
 F = SAE No. 1 bolts 3/8"-24 UNF

4 Consecutive number of series (1 = applicable for MTV-5, MTV-16, MTV-25, MTV-27, MTV-37)

3 Consecutive number of basic type

2 Variable pitch propeller

1 MT-Propeller (Hersteller)
2.2 Blattkennzeichnung

() () 200-15 ()
1 2 3 4 5

5 Kleinbuchstabe für Abweichung der Blattverwindung vom Standardbereich des Herstellers

4 laufende Zählnummer des Grundmusters (beinhaltet die aerodyn. Auslegung)

3 Durchmesser in cm

2 Blattausführung und Einbau

ohne = rechtsgängig (Zug)
RD = rechtsgängig (Druck)
L = linksgängig (Zug)
LD = linksgängig (Druck)

1 Lage der Verstellzapfen

ohne = selbsttätiges Verstellen in kleine Steigung
C = selbsttätiges Verstellen in große Steigung
CF = Segelstellung, selbsttätiges Verstellen in große Steigung
CR = Bremsstellung, selbsttätiges Verstellen in große Steigung
CFR = Segelstellung, Bremsstellung und selbsttätiges Verstellen auf große Steigung

2.4 Ein Propeller für eine bestimmte Flugzeug-Triebwerk-Kombination ist immer definiert durch die Naben-, Blatt- und Spinnerkombination. Für die genauen Einstellungen (Blattwinkel) bezüglich des Flugzeugmusters, ist immer die Geräteaufkarte bzw. das Propellerlogbuch zu beachten.

Seite 10

19.10.1998
3.0 LEISTUNGSDATEN

Die allgemeinen Leistungsdaten sind dem jeweiligen Propellerkennblatt zu entnehmen. Für den Betrieb gelten die Angaben im Propellerlogbuch.

Flanschformen:

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Beschreibung</th>
<th>Bolzen-Größe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Motorseglertriebw.</td>
<td>80 mm, 7/16"-20UNF</td>
</tr>
<tr>
<td>B</td>
<td>SAE Nr. 2 mod.</td>
<td>1/2"-20UNF</td>
</tr>
<tr>
<td>C</td>
<td>SAE Nr. 2 mod.</td>
<td>7/16"-20 UNF</td>
</tr>
<tr>
<td>D</td>
<td>ARP 502</td>
<td>1/2"-20 UNF</td>
</tr>
<tr>
<td>E</td>
<td>ARP 880</td>
<td>9/16"-18 UNF</td>
</tr>
<tr>
<td>F</td>
<td>SAE No. 1</td>
<td>3/8"-24 UNF</td>
</tr>
<tr>
<td>K</td>
<td>M 14 P/PF</td>
<td>9/16"-18 UNF</td>
</tr>
<tr>
<td>N</td>
<td>PT6A-67A</td>
<td>9/16"-18 UNF</td>
</tr>
<tr>
<td>P</td>
<td>Rotax 912/14</td>
<td>1/2"-20 UNF</td>
</tr>
<tr>
<td>R</td>
<td>Austrodiesel</td>
<td>1/2"-20 UNF</td>
</tr>
</tbody>
</table>

Regler: P-480-() nach Spezifikation für die jeweilige Triebwerks/Flugzeug-Kombination.

3.0 PERFORMANCE DATA

For the general performance data refer to the applicable propeller TCDS. For operation refer to your Propeller-Logbook.

Type of Flanges:

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Beschreibung</th>
<th>Bolzen-Größe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Motorglider engines, bolt dia. 80 mm, bolts 7/16" - 20 UNF</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>SAE No. 2 mod.</td>
<td>1/2"-20UNF</td>
</tr>
<tr>
<td>C</td>
<td>SAE No. 2 mod.</td>
<td>7/16"-20 UNF</td>
</tr>
<tr>
<td>D</td>
<td>ARP 502</td>
<td>1/2"-20 UNF</td>
</tr>
<tr>
<td>E</td>
<td>ARP 880</td>
<td>9/16"-18 UNF</td>
</tr>
<tr>
<td>F</td>
<td>SAE No. 1</td>
<td>3/8"-24 UNF</td>
</tr>
<tr>
<td>K</td>
<td>M 14 P/PF</td>
<td>9/16"-18 UNF</td>
</tr>
<tr>
<td>N</td>
<td>PT6A-67A</td>
<td>9/16"-18 UNF</td>
</tr>
<tr>
<td>P</td>
<td>Rotax 912/14</td>
<td>1/2"-20 UNF</td>
</tr>
<tr>
<td>R</td>
<td>Austrodiesel</td>
<td>1/2"-20 UNF</td>
</tr>
</tbody>
</table>

Governor: P-480-() according to the specification for the applicable engine/aircraft combination.
4.0 BAU- UND FUNKTIONS BESCHREIBUNG

Die Verstellpropeller bestehen aus folgenden Hauptgruppen:

- Nabe mit Blattlagerung und Verstelleinrichtung
- Doppelkolbensystem
- Federpaket für Bremsstellung
- Blätter
- Fliehgewichte
- Spinner
- Propellerregler
- Propeller-Enteisung

4.1 Nabe

Der ungeteilte Nabenkörper besteht aus geschmiedeter oder gefräster Leichtmetall-Legierung mit kugelgestrahlter und eloxierter Oberfläche. Die Blattlagerung ist als Schulterkugellager ausgeführt, wobei die Kugeln die Funktion der Halterung des Blattes übernehmen, was eine bedeutende Erhöhung der Sicherheit gegen Blattverlust ergibt. Der Lageraußenring ist in die Nabe eingepreßt und unge- teilt, während der Innenring geteilt ist und auf der Blatthülse sitzt. Die Blattvorspannung wird durch die Dicke einer Kunststoffscheibe eingestellt.

4.0 DESIGN AND OPERATION INFORMATION

The variable pitch propeller consists of the following main groups:

- Hub with blade bearings and pitch change mechanism
- Dual piston-system
- Spring assy for reverse
- Blades
- Counterweights
- Spinner
- Propeller governor
- Propeller de-icing

4.1 Hub

The one-piece hub is made from forged or milled aluminum alloy with the outer surface shot-peened and anodized. The blade bearings are special designed ball bearings, whereas the balls act as split retainers in order to hold the blades in the hub, creating an increased safety factor against blade loss. The outer bearing race is a one-piece part and pressed into the hub, while the inner race is split and installed on the blade ferrule. The blade preload is adjusted by the thickness of plastic shims.

The pitch change of the blades is obtained with a pin in the blade root. A plastic block connects the blade with the piston extension and the axial movement of the servo piston turns the blades. On the front piston the return spring is installed.
Doppelkolben-System:
Die hydraulische Verstelleinrichtung besteht aus einem Doppelkolbensystem. Einem äußeren und einem inneren Kolben. Im normalen Betriebsbereich (Niederdruck-Bereich) ist der innere und äußere Kolben miteinander verbunden. Im Betabereich (Hochdruckbereich) bleibt der äußere Kolben stehen und der innere Kolben fährt die Blätter in „Full-Reverse“.

Außerhalb der Nabe befinden sich Kontermuttern und 3 (2, MTV-21 bzw. 4, MTV-14, MTV-16) verstellbare Anschlagstangen. Mit den Kontermuttern kann die große Steigung/Segelstellung eingestellt werden. Mit den 3 (2 bzw. 4) Anschlagstangen kann die kleine Steigung eingestellt werden. Der Anschlag Reverse kann von außen nicht verstellt werden.

Achtung:
Die 3 (2 bzw. 4) Anschlagstangen müssen immer dieselbe Einstellung zueinander haben, ansonsten kann es zu Schäden in der Verstellmechanik führen.

Der innere Nabenkörper erfüllt die Funktion des Zylinders. Dadurch ergibt sich eine einfache, leichte Konstruktion. Der vordere Spinnerrträger wird zur Befestigung von Wuchtgewichten benutzt.

Dual-Piston System:
The hydraulic pitch change mechanism contains the inner and the outer pitch change piston. In the normal operating range (low pressure mode) the inner and outer piston are interconnected. In the beta range (high pressure mode) the outer piston stops and the inner piston pushes the blades into the „mechanical full reverse stop“.

Outside the hub there are check nuts and 3 (2, MTV-21 or 4, MTV-14, MTV-16) adjustable pitch rods. High pitch/feathering can be set by turning the check nuts. Low pitch can be set by turning the 3 (2 or 4) stop rods. The full reverse stop is not adjustable in the field.

Warning:
The 3 (2 or 4) stop rods must always have the same setting to each other, otherwise the pitch change mechanism will be damaged.

The inner part of the hub is used as the cylinder for the pressure oil. This arrangement allows a simple and lightweight design. The front spinner support is used to have the balance weights installed.

Die Blatthülse ist mittels Spezial-Ankerschrauben mit dem Blatt verbunden, wobei zusätzliche eine Klebung mit Epoxy erfolgt.
4.3 Fliehgewichte

4.4 Spinner

4.5 Propellerregler

Für dieses neue Reverse-System (Bremsstellung) wurden besondere Regler, und zwar die Regler P-480-() / P-9()-()entwickelt, die zwei Überdruckventile haben, wobei eines den Normaldruck für den Normalbetrieb und das andere den Hochdruck für Bremsstellung (Reverse) liefert. Im Normalbetrieb wird Triebwerksöl über eine Zahnradeinheit in den Regler auf den nötigen Servodruck gebracht. Fliehgewichte und die Reglerfeder bewegen einen Steuerschieber, der das Servoöl zum oder vom Propeller fließen läßt. Das Servoöl bewegt den Kolben im Propeller und versteilt dadurch die Blätter. In stabilisiertem Zustand fließt kein Öl. Durch den Einstellhebel am Regler wird die Drehzahländerung.

4.3 Counterweights

Propellers with reverse and/or with feathering are usually equipped with counterweights on the blade root. The pitch change pin is in a different position and the blades are identified with a "C", for example C200-15. Propeller blades for feathering propellers are identified with "CF". Propeller blades for reversible propellers are identified with "CR" or "CFR".

4.4 Spinner

The spinner dome is a one-piece part made from fiber reinforced composite or spinformed aluminum alloy. The bulkhead is spinformed or truncated aluminum alloy.

The front support is part of the hub. Filler plates increase the stiffness of the dome on the cutouts for the blades. The dome is mounted on the supports by means of screws.

4.5 Propeller Governor

Completely new governors , i.e. P-480-() and P-9()-() were developed for the new reverse system. The new governor contain two relief valves. A high pressure relief valve for reverse and a low pressure relief valve for normal operation.

In normal operation the necessary increase of the engine oil pressure is reached by a gear pump in the governor, which increases the oil servo pressure. Flyweight and a speeder spring move a pilot valve, allowing servo oil to flow to and from the piston in the propeller. In on-speed condition there is no oil flow.
Wird für Bremsstellung der Hochdruck gewählt, ist die Fliehkraftregelung außer Betrieb und der Hochdruck verstellt die Blätter bis zum Anschlag "Bremsstellung".

Der Propeller hat ein einfach wirkendes System, bei dem die natürlichen Verstellkräfte der Blätter mit Fliehgewichten immer auf große Steigung/Segelstellung verstellen. Der Regler liefert Öldruck zur Steigungsverminderung.

4.6 Propeller-Enteisung

A speed adjusting lever changes the pre-load of the speeder spring. This results in an engine speed change. In high pressure mode for reverse the pilot valve is inoperative and the high pressures pushes the blades into reverse.

The change from low pressure to high pressure acts via a magnetic valve, which is installed on the governor. The magnetic valve is activated by a micro switch, which is installed on the power lever. The following pictures show the system. Also refer to manual E-508 für the P-480-() governor as well as E-1046 for the P-980-() governor.

Due to the natural twisting forces of the blades with counterweights installed, the single acting system of the propeller always turns the blades into high pitch/feathering position.

4.6 Propeller de-icing

The propeller may have electrical de-icing systems installed. The de-ice boots are bonded onto the blades as usual. The rest of the system is equal to existing components, with slipring and wire harness.
Governor oil pressure to decrease pitch

Dual pressure hydraulic propeller governor
5.0 EINBAUANWEISUNG UND BETRIEB

Achtung: Um eine einwandfreie Funktion des Reverse-Systems zu erzielen, muss die interne Leckage des Triebwerkes innerhalb der Toleranzen des Triebwerkherstellers liegen, siehe hierzu z.B. Lycoming S.I. 1462A.

Um eine gute Reverse-Funktion zu gewährleisten ist ein Mindestdruck zwischen 10 psi und 35 psi erforderlich.

5.1 Alle Propeller dieser Muster sind nur zur Befestigung an Triebwerken mit Flanschanschluß geeignet. Der entsprechende Code für die unterschiedlichen Flansche ist aus der Bezeichnung (siehe Kapitel 2) ersichtlich.

5.2 Ein Regler mit entsprechender Wirkungsrichtung des Öldrucks muß am Triebwerk angebaut werden. (Der Bedienzug soll wie im Bild dargestellt angebracht sein). Es ist zusätzlich darauf zu achten, daß die Verkabelung für die Ansteuerung vom Magnetventil nicht in die Nähe heißer Teile verlegt wird.

Siehe auch: Manual E-508 P-480-() series
Manual E-1046 P-9()-() series

5.0 INSTALLATION AND OPERATION INSTRUCTION

Attention: To ensure proper operation of the reverse feature, the internal leakage of the engine must be within the engine manufacturer’s limits, for example refer to Lycoming S.I. 1462A.

To ensure a reliable operation a minimum pressure read out between 10 psi and 35 psi is required.

5.1 All propellers of these designs are only suitable for installation on flange type engines. The code for the flange type and size can be seen from the model designation (see chapter 2).

5.2 A governor with suitable oil pressure direction has to be installed on the engine, the control lever being mounted as shown below. Pay attention that the wire harness of the magnetic valve is not installed next to hot parts of the engine.

Also refer to: Manual E-508 P-480-() series
Manual E-1046 P-9()-() series

Falsch / wrong

Richtig / acceptable
5.2.1 Einbauanweisung für die Verkabelung des Magnetventils im Flugzeug.

Zwischen dem Stecker des Magnetventils (MS 3106E-10SL-4S) und der Stromversorgung müssen die in Figure 1 (Luftdrucksensor C-085), Figure 2 (Luftdrucksensor C-084) oder Figure 3 (Luftdrucksensor C-120) eingezeichneten Sicherheitsstufen eingebaut werden.

Der Air-Pressure-Switch Nr. 3 kann entfallen, wenn stattdessen der Sicherheitsschalter des Fahrwerks verwendet wird.

Einbau in mehrmotorige Flugzeuge siehe Figure 4 and Figure 5.

Für das 12 Volt System ist ein DC/DC Wandler erforderlich, da der Zeitschalter lediglich mit 24 VDC operiert, wogegen der Regler selbst nach wie vor ein 12 VDC System ist.

Für einmotorige Installationen siehe Figure 6 (Doppelmagnetventilregler 12 VDC) und Figure 7 (Doppelmagnetventilregler 24 VDC).

5.2.1 Installation Instruction for the wire harness of the magnetic valve in the airplane.

Between the plug of the magnetic valve (MS 3106E-10SL-4S) and the power supply, safety steps as shown in Figure1 (Airpressure Sensor C-085), Figure 2 (Airpressure Sensor C-084) or Figure 3 (Air pressure Sensor C-120) must be installed.

The Air-Pressure-Switch No. 3 can be omitted, if it is connected to the micro switch of the retractable landing gear.

Multi-Engine Aircraft Installation see Figure 4 and Figure 5.

Optional for the Dual Magnetic Valve Governors using an electromagnetic valve to reverse and coming back from reverse an additional timer is needed in the wiring. The timer is needed to activate the out of reverse magnetic valve.

For 12 Volt Systems a DC/DC converter is needed as the timer works only with 24 VDC whereas the governor is still a 12 VDC system.

For single engine installations refer to Figure 6 (Double Valve Governor 12 VDC) and Figure 7 (Double Valve Governor 24VDC).
Für zweimotorige Installationen gelten Figure 8 (Doppelmagnetventilregler 12 VDC) und Figure 9 (Doppelmagnetventilregler 24 VDC).

Die Schaltuhr ermöglicht die Einstellung der Öl-Ablasszeit im Regler, damit der Propeller schneller aus Revere fährt.

Falls kein Zeitschalter eingebaut wird, kann optional ein 2-Position Wippschalter für den Doppelmagnet-Ventilregler verwendet werden; siehe Figure 10.

Für die Verkabelung der Magnetventile zur Steckerbelegung der Magnetventile, sind die Zeichnungen (Figure) 6, 7, 8, 9 und 10 zu beachten.

For twin engine installations see Figure 8 (Double Valve Governor 12 VDC) and Figure 9 (Double Valve Governor 24 VDC).

The timer gives the possibility to adjust the drain time in the governor that the propeller comes out of reverse faster.

If no timer is used, a 2-position momentary rocker switch can be installed for the double valve governor which eliminates the need of the timer and the DC/DC converter; see Figure 10 for the installation.

For the wiring of the Magnetic Valves to the connector for the Dual Magnetic Valve Governors refer to Figures 6, 7, 8, 9 and 10.
Figure 1

1 Battery / Power Supply
2 Fuse / Circuit Breaker (489-TC-G) 4A
3 Air Pressure Sensor C-085
 X-21 = 60 kts (range 40-70kts)
 X-2B = 80 kts (range 60-90kts)
31 PITOT Pressure
32 STATIC Pressure

4 Switch (MS35058-22) and switch guard (MS25224-1)
5 Oil Pressure Sensor C-089
6 Reverse-Beta Light (yellow)
 MS (MS25041-4)
 * Bulb GE-327 (28VDC)
 or Bulb GE-330 (12VDC)
7 Electromagnetic Beta Valve (Governor)
 with MS3106A-10SL-4S connector-plug
 * 097-3057-1004 (strain relief)
Figure 2

1 Battery / Power Supply
2 Fuse / Circuit Breaker (483-TC-D) 4A
3 Air Pressure Switch C-084
31 PITOT Pressure
32 STATIC Pressure

4 Switch (MS35058-22) and switch guard (MS25224-1)
5 Oil Pressure Sensor C-089
6 Reverse-Beta Light (yellow) MS (MS25041-4)
 + Bulb GE-327 (28VDC)
 or Bulb GE-330 (12VDC)
7 Electromagnetic Beta Valve (Governor) with MS3106A-10SL-4S connector-plug
 + 097-3057-1004 (strain relief)

Wires YELLOW
BLUE
WHITE
RED
not used

Figure 2
Figure 3

1. Battery / Power Supply
2. Fuse / Circuit Breaker (483-TC-G) 4A
3. Air Pressure Sensor C-120
4. PITOT Pressure
5. STATIC Pressure
6. Switch (MS35058-22) and switch guard (MS25224-1)
7. Oil Pressure Sensor C-089
8. Reverse-Beta Light (yellow) MS (MS25041-4)
 + Bulb GE-327 (28VDC)
 or Bulb GE-330 (12VDC)
9. Electromagnetic Beta Valve (Governor) with MS3106A-10SL-4S connector-plug
 + 097-3057-1004 (strain relief)
Figure 4

Multi-Engine Airplanes activated with Microswitch at the Power Lever

Figure 4

Mehrmotorige Flugzeuge aktiviert durch einen Mikroschalter am Leistungshebel
Multi-Engine Airplanes activated with Microswitch at the Power Lever

Figure 5
Mehrmotorige Flugzeuge aktiviert durch einen Mikroschalter am Leistungshebel
Figure 6:
Single Engine Airplanes: Double Valve Governor - 12 VDC
Page 17-7 2012-02-14
Figure 7: Singe engine Airplane: Double Valve Governor - 24 VDC
Page 17-8 2012-02-14
Zweimotorige Flugzeuge: Doppelmagnetventil-Regler - 12 VDC

Reverse Kit P-718-6-12 (12VDC) (Twin Engine) (Double Valve Governor)

Figure 8

Twin Engine Airplanes: Double Valve Governor - 12 VCD

Seite 17-9 14.02.2012

Page 17-9 2012-02-14
Figure 9
Twine Engine Airplanes: Double Valve Governor - 24 VDC

Reverse Kit P-718-6-24 (24VDC)
(Twin Engine)
(Double Valve Governor)

Figure 9
Zweimotorige Flugzeuge: Doppelmagnetventil-Regler - 24 VDC

Seite 17-10 14.02.2012

Page 17-10 2012-02-14
Figure 10: 2-Position Momentary Rocker Switch without timer; 12 VDC or 24 VDC
Für Flugzeuge mit Cam Box (Mikroschalter No. 4 in der Cam Box)

Für Flugzeuge mit „Guarded Switch“ Nr. 4
Antstatt der o.a. „Cam Box“ kann auch ein „Guarded Switch“ eingebaut sein. Bei diesem System die Drehzahl des Propellers unter ca. 1400 RPM reduzieren und danach Reverse aktivieren. Sobald die Blätter in den Beta Bereich fahren, die Leistung erhöhen um negativen Schub zu erzeugen.

Achtung:
Für zweimotorige Flugzeuge darf nur ein „Guarded switch“ eingebaut werden, da die Möglichkeit, daß nur ein Propeller aufgrund falscher Bedienung in Reverse geht unmöglich ist.

For Airplanes with Cam Box (Microswitch No. 4 inside the Cam Box)
Once the power lever is moved backwards and lifted over an „idle stop gate“ (protection against unintended reverse) into the beta range, a micro switch will activate the „solenoid valve“, which opens the high pressure servo line to the propeller. A cam will advance the power control for increase of power to increase negative thrust.

For Aiplanes with „Guarded Switch“ No. 4
Instead of a cam box, a guarded switch can be installed. When using this system reduce the revolution of the Propeller below 1400 RPM and activate reverse mode. As soon as the blades enter the beta range, increase power to produce negative thrust.

Attention:
For Twin engine aircraft only one guarded switch should be used, because the possibility that only one propeller is entering reverse, due to wrong handling, is impossible.

5.4 Propeller und Triebwerksflansch mit Benzin o.ä. reinigen. Flächen müssen zur Kraftübertragung fettfrei und sauber sein.

Transport-Schutzkappen und Schutzhüllen entfernen!

Prüfen, ob O-Ring im Propellerflansch ist.

Achtung:
Keinen weiteren O-Ring auf die Kurbelwelle schieben.

5.3 Electrical propeller deicing may be used optionally. Complete Goodrich kits have to be installed according to Manual 30-60-02. Complete McCauley kits have to be installed according to Manual 830415. Observe the limitations during ground operation in order to avoid damage of the de-ice boots (overheating).

5.4 Clean engine and propeller flange with solvent of gasoline. Both surfaces must be dry and clean. Remove all surface defects.

Remove the shipping plugs and protective wrap!

Check position of o-ring in propeller flange.

Warning:
Do not add an o-ring on the crankshaft.
5.5 Absichtlich freigelassen!

5.5 Intentionally left blank!
5.6 Je nach Spinnerkonstruktion entweder die Grundplatte auf die Kurbelwelle stecken oder an der Nabe befestigen.

5.7 Propeller vorsichtig auf die Kurbelwelle schieben, dabei auf die Position der Spinnerplatte mit den Blattausschnitten achten. Falls aus konstruktiven Gründen die Flanschbolzen gleichzeitig mit einge dreht werden müssen, ist darauf zu achten, daß der Propeller nicht mit den Bolzen aufgezogen wird, sondern lose nachgeschoben, um eine Beschädigung des Führungsbunds des Propellers zu vermeiden, die durch Scherspäne zu Undichtheit am O-Ring führen können.

Achtung:
Niemals den Propeller mit den Flanschbolzen auf den Triebwerkflansch ziehen, sondern lediglich nur mit der Hand aufschieben.

5.8 Flanschbolzen oder Stopmuttern mit Unterlegscheiben gleichmäßig und über Kreuz anziehen. Flanschbolzen paarweise mit 0,8 mm Edelstahldraht sichern.

Anzugsmomente:

7/16"	20 UNF Stopmuttern (< 300 PS)	45 - 47 Nm
1/2"	20 UNF Stopmuttern (< 300 PS)	85 - 90 Nm
1/2"	20 UNF Bolzen (< 300 PS)	85 - 90 Nm
1/2"	20 UNF Stopmuttern (≤ 300 PS)	110 - 115 Nm
1/2"	20 UNF Bolzen (> 300 PS)	120 - 135 Nm
9/16"	18 UNF Stopmuttern	135 - 150 Nm

Achtung:
Werte gelten für ungeschmiertes, leichtgängiges Gewinde.
Anzugsmomente sorgfältig überprüfen, um Beschädigungen der Schrauben zu vermeiden!

5.6 Depending on spinner design, install backplate on crankshaft or on propeller hub.

5.7 Install the propeller carefully to the crankshaft. Observe the position of the spinner backplate for the blade position. If the design does not permit installing the flange bolts after the propeller has been fixed on the crankshaft, please observe that the propeller should not be pulled onto the crankshaft with the bolts in order to avoid damage to the hub and to avoid shearing off material causing oil leaks on the o-ring.

Attention:
Never pull a propeller onto the engine flange by the bolts, only install by hand.

5.8 Mounting bolts or stop nuts with washers should be tightened crosswise with equal force. Safety wire flange bolts in pairs with .032" stainless steel wire.

Torque:

7/16"	20 UNF stopnuts (< 300 HP)	34 - 35 ftlb
1/2"	20 UNF stopnuts (< 300 HP)	63 - 66 ftlb
1/2"	20 UNF bolts (< 300 HP)	63 - 66 ftlb
1/2"	20 UNF stopnuts (≤ 300 HP)	80 - 85 ftlb
1/2"	20 UNF bolts (> 300 HP)	90 - 100 ftlb
9/16"	18 UNF stopnuts	100 - 110 ftlb

Note:
Torque values are valid for dry, free-moving threads only.
Carefully check the torque to avoid overtorque of the bolts!
5.9 Spur der Propellerblätter prüfen. Max. zul. 3 mm, ca. 10 cm von der Blattspitze an der Austrittskante gemessen.

Aus Gründen der Sicherheit (Zündung) Propeller immer entgegen der Drehrichtung drehen.

5.10 Spinner auf die beiden Trägerplatten schieben, dabei auf die Kennzeichnung achten. Schrauben mit Plastikscheiben mit 4 - 5 Nm anziehen. Schlag des Spinners prüfen. Soll nicht mehr als 2 mm sein.

5.11 Elektrische Propellerenteisung anschließen. Testläufe von Propellern mit installierter elektrischer Enteisung sind nur mit montiertem Spinner erlaubt, da ansonsten die Enteisungsanschlüsse beschädigt werden. Vor dem Standlauf den Boden reinigen, um Steinschläge am Propellerblatt und an den Enteisungsboots zu vermeiden.
5.12 Funktionskontrolle durchführen.

Achtung:
Motor- und Propellerhersteller empfehlen, Betrieb am Boden mit hohen Drehzahlen möglichst zu vermeiden, weil hohe Triebwerks-temperaturen und Steinschlagbeschädigung der Blätter entstehen können.

5.13 Mit dem Leistungshebel nun ca. 2200 rpm (Kolbentriebwerk) / 1700 rpm (Turbinentriebwerk) einstellen. Propellerhebel zurückziehen, bis Drehzahl um ca. 100 rpm abfällt. Wenn Drehzahl stabilisiert ist, Ladedruck um ca. 3 inhg erhöhen und Reglerfunktion beobachten. Drehzahl muß sich wieder stabilisieren.

5.15 Die Steigungsanschläge wurden bei der Herstellung, entsprechend dem vorgesehenen Einbau der Flugzeug/Triebwerk Kombination, eingestellt. Die kleine Steigung kann durch Verändern der 3 (2, MTV-21 bzw. 4, MTV-14, MTV-16) Anschlagstangen und große Steigung kann durch Verändern der Kontermuttern eingestellt werden.

Achtung: Die 3 (2 bzw. 4) Anschlagstangen müssen zueinander immer dieselbe Einstellung haben, ansonsten kann es zur Beschädigung der Verstellmechanik führen.

5.12 Carry out a functional check.

Note:
Engine and propeller manufacturers recommend not to use high engine speed on ground because it can result in an excessive engine temperature and blade damage.

Adjust power lever for approx. 1700 rpm. Pull propeller lever back (out) until the rpm drops by 300 - 500. Push propeller lever full forward (in) for take off position and observe rpm increase. Decrease and increase of engine speed should have about the same time. Cycle three times to bleed air out of the system.

5.13 Now adjust power lever at approx. 2200 rpm (piston engines) / 1700 rpm (turbine engines). Pull propeller lever back until rpm drops about 100 rpm. When the rpm is stabilized, increase manifold pressure by about 3 inhg and observe the governor function. rpm must stabilize.

5.14 Watch for a clean ground surface to avoid blade damage and advance power lever and propeller lever for take off power and rpm. The static rpm must be limited by the propeller and should be 50 - 100 rpm. lower than max. rpm. See chapter "Trouble shooting" to check, if the propeller or governor limits the rpm.

5.15 Low and high pitch stops are adjusted during manufacture, according to the requirement of the aircraft/engine combination. Low pitch can be adjusted by varying the 3 (2, MTV-21 or 4, MTV-14, MTV-16) pitch stop rods and high pitch can be adjusted by turning the check nuts.

Warning: The 3 (2 or 4) pitch stop rods must always have the same setting to each other. Otherwise the pitch change mechanism can be damaged.
5.15.1 Testen des Reverse Systems:

5.15.2 Prüfung der Kolbenverriegelung:
Ca. 1600 Umdrehungen mit dem Gashebel vorwählen und Reverse aktivieren. Die Drehzahl muß um ca. 100 RPM ansteigen, weil die Kolbenverriegelung eingerastet ist. Falls der Propeller in Reverse versteilt, muß der Propeller vor dem nächsten Flug repariert werden.

ACHTUNG:
Das Reverse System funktioniert nicht über einer Öl-Temperatur von 102°C (215°F).

5.15.3 Überprüfen des Startlocks (z.B. für Wasserflugzeuge)
Falls installiert, vor dem Abschalten des Triebwerks Reverse aktivieren und mit den Blättern in Full Reverse Triebwerk abstellen.
Nach Stillstand des Triebwerks Reverse abschalten.
Prüfen ob der Lock eingerastet ist und der Blattwinkel von ca. -2° (0,75 R Station) vorhanden ist.
Bei erneutem Anlassen ca. 800 RPM vorwählen. Reverse aktivieren und aus dem Lock fahren.

Achtung:
Keine hohen Drehzahlen einstellen, sowie auf Vorwärtschub und Flugzeugbewegung achten.

5.15.1 Reverse System Test:
Select approx. 1000 - 1100 RPM with power lever, activate the beta-system and check function as well as reverse thrust. Switch off reverse function.

5.15.2 Check piston lock function:
Select approx. 1600 RPM with power lever, activate the Beta-System and watch approx. 100RPM increase because of the piston lock is engaged. If the prop reverses, the piston lock does not function and the problem must be corrected before any further flight.

WARNING:
System does not operate above an oil temperature of 102°C (215°F).

5.15.3 Check of the Startlock (i.e. for Seaplanes)
If installed, before the engine shut down, activate the reverse system and shut down the engine.
After engine stops, deactivate the system.
Check the propeller that the lock is engaged and the blade angle is approx. -2° at 0,75 R reference station.
After engine is started again, adjust idle to approx. 800 RPM and activate the system in order to free the start lock.

WARNING:
Do not use high rpm and watch for forward thrust and unintended aircraft movement.
5.16 Nach dem Standlauf auf Ölleckage, Blattspiel und einwandfreien Zustand der Enteisung prüfen.

Fettleckagen:

ACHTUNG:
Bei der ersten Inbetriebnahme eines neuen oder überholten Propellers kann Fett an den Blättern und an der inneren Oberfläche des Propellerspinsers zu sehen sein. Das ist normal und kein Anzeichen einer dauernden Fettleckage.

Ausgetretenes Fett an den Blattwurzeln oder im Inneren des Spinners ist mit einem milden Lösungsmittel komplett zu entfernen.
Kleinere Fettmengen, sichtbar an einer oder mehreren Blattwurzel(n) sowie am Spinner weiter beobachten, ob eine Verschlechterung eintritt.

Wenn innerhalb von 5 Flugstunden das Fett ausserhalb der Blattwurzel nicht an mehr als 18 cm (7 inches) auf der Blattoberfläche vorhanden ist, wird die Fettleckage als unerheblich eingestuft und sollte lediglich beobachtet werden.

Eine fortbestehende Fettleckage nach 20 Flugstunden ab dem Auftreten der ersten Leckage erfordert eine Reparatur in einem autorisierten Servicebetrieb.
Im Zweifelsfall ist der Hersteller zwecks weiterer Vorgehensweise zu kontaktieren!

5.17 Prüfflug durchführen!

5.16 After the ground runs, check for oil leaks, blade shake and condition of the de-ice system.

Grease Leakages:

NOTE:
The first run-up of a new or overhauled propeller may leave grease on the blades and inner surface of the spinner dome. This is normal and do not mean that it will be a continuing grease leakage.

Remove any grease on the blades or inner surface of the spinner dome by using a mild solvent.

Minor grease leak which can be seen on one or all blade root(s) and spinner should be monitored if it gets worse.

If the grease leak does not spray more than 7 inches (18 cm) on the blade surface from the blade root outside the blade ferrule in 5 hours of operation, it is defined as minor and should be only monitored!

Continued grease leakage after 20 hours of operation from first leakage requires repair at an authorized service repair facility within 5 operating hours.

In case of doubt, contact manufacturer for further action!

5.17 Perform a Test Flight!
5.18 Betrieb

Propeller und Propellerregler sind durch Versuche aufeinander abgestimmt. Der Regler muß konstante Drehzahl ermöglichen. Die Standdrehzahl bei Vollgas muß ca. 50 - 100 rpm unter der Soll- drehzahl liegen und der Propeller muß die Drehzahl begrenzen.

Begrenzt der Regler die Drehzahl, muß dieser nachgestellt werden. Während des Startvorgangs muß die Drehzahl mit steigender Geschwindigkeit zunehmen, und vom Regler auf die Solldrehzahl begrenzt werden.

Die Drehzahl kann bei jeder Leistungs- und Drehzahleinstellung verändert werden und muß im gesamten Geschwindigkeitsbereich automatisch geregelt werden.

Bei Ausfall des Öldrucks ist es auf Grund der konstruktiven Eigenschaften des Propellers unmöglich, die Blattverstellung in den Betabetrieb zu bringen, was eine besondere Sicherheitseinrichtung gegen unbeabsichtigte Bremsstellung mit sich bringt. Der Propeller versteht sich automatisch auf große Steigung oder Segelstellung.

Anmerkung:

5.18 Operation

Propeller and governor are selected as a result of tests. The governor must allow constant speed. On take off, the static rpm should be approx. 50 - 100 rpm. lower than max. rpm.

must limit this rpm. If the governor limits rpm, it must be readjusted. During the take off run, the rpm must increase with airspeed and the governor must limit max. rpm.

The rpm can be changed at all power and rpm settings and must be held constant automatically within the entire flight envelope.

In case of failure of the oil pressure, reverse modus cannot be reached. This is a additional safety installation against unintended reverse modus. The propeller changes pitch automatically to high pitch or feathering.

High pitch is set to such a value that in case oil pressure fails, it should be possible to continue flight with reduced power. Go around would be from limited to impossible. This is only valid for propellers without feathering.

Remark:
Move power lever and rpm lever always slowly to avoid overspeed. The lightweight blades result in faster reaction of rpm and pitch change than usual variable pitch propellers with metal blades.
5.19 Startcheck

Vor dem Start Propellerverstellung mindestens 2 mal betätigen, um das System durchzuspülen. Im Reiseflug können viele Leistungs- und Drehzahlkombinationen eingestellt werden, da die Ansteuerung stufenlos ist. Etwaige Drehzahlbegrenzungen von Triebwerk- oder Propellerhersteller sind zu beachten und der Drehzahlmesser soll markiert sein.
Siehe Flughandbuch.

5.19 Pre-Flight Check

The propeller should be cycled at least twice to spill oil before every flight. In cruise flight an infinite number of power and rpm settings are possible because there is no restriction between the stops. Rpm restrictions from the engine or propeller manufacturer must be observed and the tachometer must be marked.
See aircraft flight manual.
5.19.1. Fahren auf Wasser oder Lande

Attention:
Laufende Anwendung von Reverse kann besonders bei hohen Umgebungstemperaturen zu höheren Öltemperaturen führen.
Falls die Motorölturbine 215°F (102°C) überschreitet, kann eine Reduzierung der Reverseleistung auftreten.

Vor dem Start:
Zusätzlich zum normalen Startcheck ist das Reverse System zu testen.

Testen des Reverse Systems:
Ca. 1200 RPM mit dem Gashebel vorwählen und Reverse aktivieren.
Überprüfen der Betafunktion und des negativen Schubs.
Das aktivierte Reverse System muß durch die gelbe Reverse Lampe angezeigt werden.
Reverse-Schalter ausschalten.

Prüfung der Kolbenverriegelung (Fliehkraft Lock):
Ca. 1600 RPM mit dem Gashebel vorwählen und Reverse aktivieren.
Die Drehzahl muß um ca. 100 RPM ansteigen, weil die Kolbenverriegelung eingerastet ist.
Der Propeller darf nicht in Reverse verstellen.
Drehzahl auf 1000RPM verringern
Reverse-Schalter ausschalten und Schalterkappe schließen.
Gelbe Reverse Anzeigelampe muß aus sein.

5.19.1. Taxing

Note:
Continuous use of the reverse function may lead to high engine oil temperatures especially at high ambient temperatures. If the engine oil temperature exceeds 215°F (102°C) a reduction in reverse capability may occur.

Before Take-Off:
In addition to the before takeoff checks, the reverse system must also be checked as follows.

Reverse System Check:
Select propeller speed lever to full fine position (maximum rpm).
Advance power lever to achieve approximately 1200 RPM.
Activate the reverse system by turning the reverse switch to the ON position.
Check beta function and reverse thrust. Amber reverse light must illuminate.
Deactivate reverse system by returning reverse switch to the OFF position.

Piston Lock (centrifugal safety lock) check:
Select propeller speed lever to full fine position (maximum rpm).
Advance power lever to achieve approximately 1600 RPM.
Activate the reverse system by turning the reverse switch to the ON position.
Propeller speed will increase for about 100 RPM, because of the engaged piston lock.
Retard power lever below 1000 RPM.
Deactivate reverse system by returning reverse switch to the OFF position.
Verify that the reverse switch is in OFF position and safety cap is closed.
Verify that the amber reverse annunciator light is OFF.
5.20 Segelstellung

Beim diesen Propellern soll bei Propellerdrehzahlen um 1500 rpm der Propellerverstellhebel auf Segelstellung gewählt werden, um Segelstellung zu erreichen. Dazu muß eine Sicherheitssperre am Verstellhebel überwunden werden.

Bei Rückführung aus Segelstellung vor dem Wiederanlassen des Triebwerks im Flug, Verstellhebel auf niedrige Reisendrehzahl wählen, um Überdrehzahlen durch Windmilling zu vermeiden.

Im Landeanflug, nach entsprechender Reduzierung von Geschwindigkeit und Leistung, muß der Propellerverstellhebel wieder auf Startstellung gebracht werden, damit im Falle eines Durchstartens die volle Startleistung zur Verfügung steht.

5.20 Feathering

With these propellers feathering is achieved with propeller lever pulled to feather at about 1500 propeller-rpm. The control must be pulled over a safety step for unintended feathering.

For unfeathering and before the engine is restarted in the air, move the lever to a low cruise rpm setting in order to avoid overspeed due to windmilling.

During approach after speed and power is reduced accordingly, the propeller lever must be adjusted for take off (max. rpm) in order to have full climb power in case of a missed approach.
5.21 Bremsstellung

Die Bremsstellung ist bei diesen Propellern nur für den Bodenbetrieb vorgesehen.

Für Flugzeuge mit Cam Box:
Reverse durch zurückziehen des Leistungshebels über das „Idle Stop Gate“ aktivieren.
Die Propeller Drehzahl muß dabei unter 1400 RPM liegen.
Durch weiteres zurückziehen wird die Leistung und dadurch der negative Schub durch das Cam erhöht.

Für Flugzeuge mit „Guarded Switch“.
Leistungshebel in Idle ziehen und die Propellerdrehzahl unter 1300 RPM bringen.
Reverse aktivieren.
Mit dem Leistungshebel den Reverse Schub kontrollieren.

ACHTUNG: Das Reverse-System funktioniert nur unter 102°C (215°F) Öltemperatur.

Leistungsänderungen langsam vollziehen, da der Reverse Schub nur durch den Gashebel kontrolliert wird.

ACHTUNG: Im Reverse Mode Triebwerkstemperaturen beachten, da die Kühlung beeinträchtigt werden kann.

In Reverse wird gleichzeitig eine gelbe Kontrollampe aktiviert, die die Besatzung informiert, daß sich die Propellerblätter im Betabereich befinden. Das System hat mehrere Sicherheitseinrichtungen, um im Flug Bremsstellung zu verhindern.

Siehe Seite 17-1

5.21 Reverse Modus

With these propellers Reverse-Mode is only designed for ground operation.

For airlanes with a „Cam Box“:
Activate Reverse by moving the power lever backwards and lift it over an Idle Stop Gate.
The propeller revolution must be below 1400 RPM. A cam will advance the power control for increase of power to increase negative thrust.

For airplane with a guarded switch.
Pull the power lever to idle and bring the propeller revolution below 1300 RPM. Activate reverse and observe that the blades are entering the beta range. Control the negative thrust with the power lever.

WARNING: System does not operate above an oil temperature of 102°C (215°F).

Move the power lever slowly, because negative thrust is only controlled by engine power.

WARNING: Extended reverse may also affect the engine cooling, observe the cylinder and oil temperatures.

During entering reverse a yellow lamp inside the cockpit must illuminate which informs the pilots that the propeller is in beta mode (reverse). There are different safety provisions included to avoid unintended reverse during flight.

Refer to Page 17-1.
ANMERKUNG:

Langes Fahren auf dem Wasser oder Lande bei laufender Anwendung von Reverse kann besonders bei hohen Umgebungstemperaturen zu höheren Öltemperaturen führen.

Falls die Motoröltemperatur 215°F (102°C) überschreitet, kann eine Reduzierung der Reverseleistung auftreten.

Es kann wegen der hohen Motorölviskosität bei Öltemperaturen unter 100°F (38°C) zu einer leichten Rückwärtsbewegung der Flugzeuge kommen nachdem der Motor angelassen wurde.

Es wird empfohlen, wenn das Flugzeug auf Wasser geparkt wird, entsprechend anzubinden bevor der Motor gestartet wird und den Motor ein paar Minuten im Leerlauf zu betreiben bis eine Öltemperatur von ungefähr 100°F (38°C) erreicht wurde.

REMARK:

Continuous use of the reverse function may lead to high engine oil temperatures especially at high ambient temperatures.

If the engine oil temperature exceeds 215°F (102°C) a reduction in reverse capability may occur.

Due to the high viscosity of the engine oil at oil temperatures below 100°F (38°C)a slightly backward movement of the airplane may occur when starting the engine.

It is recommended to moor the airplane when parked on water before starting the engine and to warm up the engine at idle power (in the start lock)for a few minutes until the engine oil temperature has reached about 100°F (38°C).
5.22 Propeller-Enteisung

ACHTUNG:
DER PROPELLER MIT ELEKTRISCHEM ENTEISUNGSSYSTEM DARF NICHT OHNE SPINNER BETRIEBEN WERDEN, DA DADURCH DIE ENTEISUNGS-KABEL BESCHÄDIGT WERDEN.

5.22 Propeller De-Icing

Check ammeter reading after switching on the electrical propeller de-ice system. With running propeller, no time limit for "on" is required, while with a stopped propeller, overheating can result and therefore only one cycle should be used for test purposes.

ATTENTION:
DO NOT OPERATE A PROPELLER WITH ELECTRICAL DE-ICING SYSTEM WITHOUT SPINNER DOME AS THIS WILL CAUSE DAMAGE TO THE DE-ICING SYSTEM - WIRING.
6.0 KONTROLLEN

6.1 Tägliche Kontrolle
(kann durch den Piloten durchgeführt werden):

Vor jedem Flug Zustand der Blätter und des Spinners prüfen. Blattspitzenspiel bis 3 mm erlaubt (wackeln). Blattwinkelspiel bis 2° zulässig.

Keine unzulässigen Risse in den Blättern (siehe 6.2). Kantenschutz darf nicht lose sein. PU-Band einwandfrei und vorhanden, sonst innerhalb der nächsten 10 Betriebsstunden ab letzter Kontrolle ersetzen. Keine Ölleckage.

SMA Anwendung
(z.B. MTV-9-B-()-S an SMA SR 305-230 Motor)

ACHTUNG:
Bei Auftreten eines Blattspitzenspieles ist der Propeller an eine zugelassene Werkstatt zu senden, um dort neu justiert zu werden.

6.0 INSPECTIONS

6.1 Daily Inspection:
(Can be conducted by the pilot)

Before each flight inspect the condition of the blades and spinner. Blade shake is allowed up to 1/8 inch and a blade angle play of 2° is acceptable.

No critical cracks in the blades (see 6.2). Metal erosion sheath may not be loose. PU-strip proper and existing. If not, replace within the next 10 hours after last inspection. No oil leaks.

SMA Application
(i.e. MTV-9-B-()-S on SMA SR 305-230 engine)

On the SMA application (i.e. MTV-9-B-S on SMA SR 305-230 engine) no blade shake is allowed. However, a blade angle play of 2° is acceptable.

CAUTION:
In case of blade shake send the propeller to an authorized service station for re-adjustment.
6.1.1 Fettleckagen:

ACHTUNG:
Bei der ersten Inbetriebnahme eines neuen oder überholten Propellers kann Fett an den Blättern und an der inneren Oberfläche des Propellerspinners zu sehen sein. Das ist normal und kein Anzeichen einer dauernden Fettleckage.

Ausgetretenes Fett an den Blattwurzeln oder im Inneren des Spinners ist mit einem milden Lösungsmittel komplett zu entfernen.

Kleinere Fettmengen, sichtbar an einer oder mehreren Blattwurzel(n) sowie am Spinner weiter beobachten, ob eine Verschlechterung eintritt.

Wenn innerhalb von 5 Flugstunden das Fett ausserhalb der Blattwurzel nicht an mehr als 18 cm (7 inches) auf der Blattoberfläche vorhanden ist, wird die Fettleckage als unerheblich eingestuft und sollte lediglich beobachtet werden.

Eine fortbestehende Fettleckage nach 20 Flugstunden ab dem Auftreten der ersten Leckage erfordert eine Reparatur in einem autorisierten Servicebetrieb.

Im Zweifelsfall ist der Hersteller zwecks weiterer Vorgehensweise zu kontaktieren.

6.1.1 Grease Leackages:

NOTE:
The first run-up of a new or overhauled propeller may leave grease on the blades and inner surface of the spinner dome. This is normal and do not mean that it will be a continuing grease leakage.

Remove any grease on the blades or inner surface of the spinner dome by using a mild solvent.

Minor grease leak which can be seen on one or all blade root(s) and spinner should be monitored if it gets worse.

If the grease leak does not spray more than 7 inches (18 cm) on the blade surface from the blade root outside the blade ferrule in 5 hours of operation, it is defined as minor and should be only monitored!

Continued grease leakage after 20 hours of operation from first leakage requires repair at an authorized service repair facility within 5 operating hours.

In case of doubt, contact manufacturer for further action!
E-504

6.2 Kontrolle

- Gemäss Flugzeugwartungshandbuch oder
- 100 Flugstunden, wenn keine zeitlichen Angaben vorhanden sind.

6.2.1 Spinnerdom entfernen, auf Risse prüfen. Blattspitzenspiel prüfen, max. 3 mm.

Das Blattspitzenspiel muss IN und GEGEN die Drehrichtung geprüft werden. Gemessen wird 10 cm von der Blattspitze an der Austrittskante.

Beachte:
NICHT in Flugrichtung messen, da sonst auch die Biegung des Blattes mit gemessen wird.

Falls ein Startlock installiert ist, ist an diesem eine visuelle Inspektion auf Verschleisserscheinungen vorzunehmen.

Achtung:
Es ist sicherzustellen, dass die beweglichen Teile des Startlocks vollkommen öl-, fett- und schmutzfrei sind. Bei Bedarf Teile mit einem Entfetter reinigen!
Ein verschmutztes Startlock führt zur Trägheit und dadurch zur Beschädigung der Führungsstange.

6.2 Inspections

- According to Aircraft Maintenance Manual or
- 100 flight hours, if no schedule available.

6.2.1 Remove spinner and check for cracks. Check blade shake, max. 1/8 inch.

The blade shake must be checked IN and OPPOSITE the direction of rotation. Measure blade shake 4 inch from blade tip at the trailing edge.

Note:
DO NOT measure in flight direction, as the blade bending will also be measured.
Check blade angle play, max. 2°. If the check shows values above these tolerances, contact the service department of MT-Propeller. Inspect outside condition of the hub and parts for cracks, corrosion, deterioration. Inspect all check nuts for tightness. Check all safety means to be intact. Check flange bolts or stopnuts for tightness. Check front and rear spinner plate for cracks and fixing. Inspect blade root and hub for oil and grease leaks. Check position of counterweights. Check electric de-ice boots and wire harness for connection and condition. Check brushes and slip ring for condition.

In case a startlock is installed, perform a visual inspection of wear.

Attention:
Make sure that the start lock moving parts are free from oil, grease and dirt.
Clean with a degreaser if needed!
If the start lock is contaminated, it may be sluggish and damage the guide rod.
6.2.1.1 SMA Anwendung
(z.B. MTV-9-B-()-S an SMA SR 305-230 Motor)

6.2.2 Blätter einer Sichtprüfung nach 6.2.3 unterziehen. Risse im GFK-Mantel und Kantenbeschlag sind nur bedingt zulässig.

6.2.1.1 SMA – Application
(i.e. MTV-9-B-()-S on SMA SR 305-230 engine)

Remove spinner and check for cracks. Check blade shake. Note: Blade shake is not allowed! Check blade angle play, max. 2°. If the check shows values above these tolerances, contact the service department of MT-Propeller. Inspect outside condition of the hub and parts for cracks, corrosion, deterioration. Inspect check nut for low pitch stop for tightness. Check all safety means to be intact. Check flange bolts or stopnuts for tightness. Check front and rear spinner plate for cracks and fixing. Inspect blade root and hub for oil and grease leaks. Check position of counterweights if applicable. Check electric de-ice boots and wire harness for connection and condition. Check brushes and slip ring for condition.

6.2.2 Check blades, see 6.2.3, for cracks in the fiberglass cover and blade erosion sheath. There are only certain cracks allowed.
Lackrisse im Blatt und entlang des Kantenbeschlags sowie am Anfang des Beschlags sind zulässig, soweit sie nicht zum Lösen des Beschlags führen bzw. der Schutz gegen Feuchtigkeit für den Blattkörper einwandfrei ist. Blasen oder Delaminationen von bis zu 6 cm² sind zulässig. Im Zweifel die Serviceabteilung von MT-Propeller fragen.

Bilder möglicher Risse im Blatt

Überprüfen, ob das Silikon, das das Blatt zur Blatthülse hin abdichtet, nicht beschädigt ist. Falls eine Beschädigung vorliegt, **SOFORT REPAIREREN**, damit keine Feuchtigkeit in das Blatt bzw. in die Blatthülse eindringen kann.

Cracks along the leading edge and on the beginning of the erosion sheath area are allowed as long as the erosion sheath is not loose. Cracks in the painted surface are allowed as long as no moisture can enter the blade core. Blisters or delaminations up to 1 square inch are permissible. In case of questionable conditions please contact the service department of MT-Propeller.

Check that the silicone, sealing the blade to the blade ferrule, is not damaged. If a damage is obvious, **REPAIR IMMEDIATELY** that no moisture can enter into blade body and blade ferrule.

Check that the silicone, sealing the blade to the blade ferrule, is not damaged. If a damage is obvious, **REPAIR IMMEDIATELY** that no moisture can enter into blade body and blade ferrule.

Perform visual inspection in case of notches, dents, nicks or other damages to the blade body (for example stone nicks). If no cracks exist, fill void with an appropriate Epoxy resin (5 min. Epoxy). The aerodynamic of the airfoil must not be destroyed. Afterwards sand the filled spot with sandpaper. Apply a lacquer layer to protect the repaired spot against moisture. Whenever performing pre-flight inspection, check this area carefully for possible cracks. During the next repair/overhaul at the manufacturer or service station this area will be inspected and repaired by a competent expert.
Mögliche Risse entlang des Beschlagblechs. Falls ein Längsriß am Übergang vom Kantenbeschlag zum Blatt auftritt, diesen nach Punkt 6.6 untersuchen. Es liegt eine Delamination in diesem Bereich vor.

Possible cracks along the metal erosion sheath. If there is an indication that the erosion sheath gets loose on the transition area to the blade, inspect it according to item 6.6.

Cracked erosion sheath requires immediate repair. If chordwise cracks appear, return propeller to manufacturer. Replace PU-tape as soon as possible, if loose or damaged.
E-504

6.2.3 Mögliche Beschädigungen entlang des Kantenbeschlags

6.2.3.1 Runde Dellen (über 6 mm x 6 mm nicht reparieren, Beschlag wechseln)

6.2.3.2 spitze Dellen (über 6 mm x 6 mm nicht reparieren, Beschlag wechseln)

6.2.3.3 Risse (Risse im Beschlag sind nicht erlaubt, Beschlag wechseln)

6.2.3.4 Hohlstellen (max. 2,5 cm², Abstand zwischen den Hohlstellen min. 14 cm, sonst zur Reparatur)

6.2.3.5 Erosion

6.2.3.6 Blitzschlag

6.3 Falls die unter 6.2.3.1 (Runde Dellen) genannten Einschläge im Kantenbeschlag vorhanden sind, untersuchen, ob sie durch den Kantenbeschlag hindurch gehen. Ist dies nicht der Fall kann man diese Dellen mit Epoxy auffüllen und danach bündig abschleifen.

Epoxy kann aus „kosmetischen“ Gründen aufgetragen werden, es besteht aber kein Zwang, dies so zu tun.

Zusätzlich ist dieser Bereich bei jeder Vorflugkontrolle auf mögliche Risse zu untersuchen. Der Beschlag kann bis zur nächsten Reparatur/Überholung bleiben.

6.2.3 Possible Damage along Erosion Sheath

6.2.3.1 Circular dents (more than 0.24 inch x 0.24 inch do not repair, change erosion sheath)

6.2.3.2 Pointed dents (more than 0.24 inch x 0.24 inch do not repair, change erosion sheath)

6.2.3.3 Cracks (no cracks allowed in the erosion sheath, otherwise change erosion sheath)

6.2.3.4 Hollow and debonded spots (max. 0.39 square inch, no two spots may occur within 5.5 inch of each other, otherwise blade must be repaired)

6.2.3.5 Erosion

6.2.3.6 Lightning strike

6.3 In case of any impact as mentioned under item 6.2.3.1 (Circular Dents), check whether it penetrates through the erosion sheath. If not, fill dent with Epoxy and grind off until there is a smooth surface.

Epoxy may be applied for cosmetic reasons but not “must be done”.

Check this area carefully for possible cracks whenever performing pre-flight inspection. Erosion sheath may remain until next repair/overhaul will be done.

6.5 Falls die unter 6.2.3.3 genannten Querrisse im Beschlag vorhanden sind, muß der Beschlag sofort ersetzt werden, d.h. Propeller zum Hersteller oder zu einer autorisierten Servicestation senden.

6.4 In case of impacts in the erosion sheath (as mentioned under item 6.2.3.2 the sheath may possibly be penetrated. If not, proceed as described under item 6.3. If yes, check erosion sheath for possible cracks. If there are no cracks, the dent must be filled with Epoxy so that no moisture can enter into the blade body. Check this area carefully for possible cracks whenever performing pre-flight inspection. The erosion sheath must be replaced as soon as possible.

6.5 If there are any cracks (as mentioned under item 6.2.3.3), the erosion sheath must be replaced as soon as possible. The propeller is to be returned to the manufacturer or to an authorized service station.
6.6 Falls die unter 6.2.3.4 genannten Hohlstellen vorhanden sind, diese markieren und bei jeder Vorflugkontrolle beobachten, ob weitere Delaminationen entstehen bzw. die vorhandenen Delaminationen sich vergrößern. Diese Kontrolle kann mit einer geeigneten Münze ausgeführt werden (Tab-Test). Die Hohlstellen dürfen auf keinen Fall mehr als 30 % der gesamten Fläche des Kantenbeschlags übersteigen (in Längsrichtung max. 2,5 cm erlaubt). Ist dies der Fall muß das Blatt sofort zum Hersteller bzw. einer autorisierten Servicestation zur Reparatur gesandt werden. In jedem Fall muß vor jedem Flug die sichere Befestigung des Kantenbeschlags geprüft werden.

6.6 If any hollow and debonded spots exist (as mentioned under item 6.2.3.4), mark them. Whenever performing pre-flight inspection, monitor whether there are further delamination and/or whether the already existing delamination becomes worse. The inspection can be executed by using an appropriate coin (Tab-Test). The hollow and debonded spots must not exceed 30 % of the surface of the erosion sheath at all (lengthwise only 1 inch allowed). Otherwise the blade is to be sent to the manufacturer or to an authorized service station for repair as soon as possible. Check secure fixing of the erosion sheath in any case every time before flight.
6.7 Die unter 6.2.3.5 genannte Erosion, welche die Lackschicht auf dem Kantenbeschlag wegerodiert, ist durch die hohe Umfangsgeschwindigkeit des Propellerblattes ganz natürlich. Es ist jedoch immer darauf zu achten, daß auf keinen Fall die Erosion (über das gesamte Blatt gesehen) so tief ist, daß der GFK-Überzug beschädigt ist und die Möglichkeit besteht, daß Feuchtigkeit in den Blattkörper eindringen kann. Ist das der Fall, muß das Blatt sofort repariert/überholt werden. Gleiches gilt für einen durcherodierten Kantenbeschlag. Ist der PU-Kantenschutz beschädigt, sofort erneuern.

6.7 The erosion mentioned under item 6.2.3.5, which erodes the lacquer layer from the erosion sheath, occurs due to the peripheral speed of the blade and is normal. However, always take care that the erosion never becomes so deep that the FRP-coat is damaged and there is a possibility that moisture may enter into the blade body. In this case the blade must be repaired/overhauled immediately. Return the blades also, if the erosion sheath is eroded through. If the PU-protection tape is damaged, replace it immediately.
6.8 Blasen und Delaminationen

6.8.1 Eingedrückte / gebrochene Austrittskanten

Beschädigte Austrittskanten können mit 5 Minuten Epoxy repariert werden, vorausgesetzt, daß die Beschädigung nicht tiefer als 5 mm (0,20 inches) und nicht breiter als 15 mm (0,60 inches) ist.
Am wichtigsten dabei ist, daß keine Feuchtigkeit in den lasttragenden Blattkern eindringen kann.

Bei größerer Beschädigung Hersteller kontaktieren!

6.8.2. Blattwurzel-Schrumpfung

In seltenen Fällen kann eine Schrumpfung der Blattwurzel auftreten. Der sich dabei wellende Kunststoffmantel ist nur von kosmetischer Natur und wird bei der nächsten Generalüberholung (GÜ) korrigiert.

6.8 Blisters and delaminations

Are blisters or delaminations visible, mark them and check them periodically. Blisters from sap (resin) shall be opened to release the material. Fill void with 5-min Epoxy and sand. Larger delaminations shall be opened and the material be removed. Such areas must be covered with new fiber glass laminate. Damage on the trailing edge can be repaired the same way.

6.8.1 Crunched Trailing Edges

Crunched trailing edges can be repaired by using 5 minute Epoxy if the damage is not deeper than 5 mm (0,20 inches) and not wider than 15 mm (0,60 inches).
Most important is, that no moisture can enter into the load carrying blade body.

If damage is bigger contact manufacturer.

6.8.2. Blade Root Shrinkage

In rare cases blade root shrinkage may occur. In such a case the composite layer may create some ripples which are only of cosmetic nature and those ripples will be corrected during next overhaul (OH).
6.9 **Lightning Strike**

If a blade has an indication of lightning strike, check the entire blade and erosion sheath per item 6.3 and 6.6. Also send a report to the manufacturer (MT-Propeller).

6.9.1. **De-Ice Boots**

Installed De-Ice Boots must be checked for their correct bonding. In case a delamination is found (maximal allowed are 8 mm x 8 mm / 0.31 inch x 0.31 inch), repair with glue (i.e. Loctite 401).

After repair seal area with sealer (i.e. 3M Scotch Seal 800-AF) to avoid any moisture entering below the boot. Finally overpaint repaired area with some black varnish.

6.9 **Blitzschlag**

Falls ein Blatt Anzeichen von Blitzschlag hat, Blatt und Kantenbeschlag nach 6.3 und 6.6 untersuchen sowie einen Bericht zum Hersteller (MT-Propeller) senden.

6.9.1. **De-Ice Boots**

Installierte De-Ice Boots müssen auf ihre korrekte Verklebung geprüft werden. Falls leichte Ablösungen der Verklebung sichtbar sind (zulässig sind max. 8 mm x 8 mm / 0.31 inch x 0.31 inch) können diese mit Sekundenkleber (z.B. Loctite 401) nachgeklebt werden.

Anschließend den Bereich mit Sealer (z.B. 3M Scotch Seal 800-AF) abdichten, damit keine Feuchtigkeit in den Klebebereich eintritt. Zusätzlich die reparierte Stelle mit schwarzem Lack überstreichen.
6.10 PU-Kantenschutz

Falls der PU-Kantenschutz am inneren Teil des Blattes beschädigt oder nicht vorhanden ist, sofort (max. 2 Stunden) ersetzen. Das kann von einer fachkundigen Person gemacht werden. Falls Enteisungsgummis installiert sind, entfällt das PU-Band.

6.11 Sonderkontrollen

6.12 Grundüberholung

Achtung:
Im Falle einer Blattbeschädigung durch Fremdkörperberührung ist immer eine Grundüberholung erforderlich.

6.10 PU-Erosion protection tape

If the PU-tape at the inner portion of the blade is damaged or does not exist any more, replace it immediately (max. 2 hours). This can be done by a qualified person. If electrical de-ice-boots are installed, no PU-tape is used.

6.11 Special Inspections

Special inspections might be required on new installation without approved engine/propeller combinations or unconventional installations such as pusher propellers. A tractor propeller is conventional.

6.12 Overhaul

The time between overhauls is expressed in hours flown and calendar months since manufacture or overhaul. The figures are presented in Service Bulletin No. 1(), latest issue. They are also shown in the Propeller Logbook. In any case, a calendartime in specion must be performed after a maximum of 72 months from installation, if no more than 18 months have passed since manufacturing overhaul when properly stored. This means that calendartime TBO can be max. 90 months. The extend of the overhaul and the replacement of life-limited parts is ruled in the applicable service manual (see item 1.0.2).

Attention:
In case of a blade damage by a foreign object an overhaul is always required.
6.13 Overspeed / Overtorque

An overspeed has occurred when the propeller RPM has exceeded the maximum RPM stated in the applicable Aircraft Type Certificate Data Sheet. The total time at overspeed for a single event determines the corrective action that must be taken to ensure no damage to the propeller has occurred.

When a propeller installed on a reciprocating engine has an overspeed event, refer to the Reciprocating Engine Overspeed Limits (Fig. 3.3.1) to determine the corrective action to be taken.

Reciprocating Engines Only

<table>
<thead>
<tr>
<th>Percent Overspeed</th>
<th>Duration of Overspeed in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Scrap</td>
<td>200</td>
</tr>
<tr>
<td>Overhaul</td>
<td>250</td>
</tr>
<tr>
<td>Overspeed Inspection</td>
<td>300</td>
</tr>
<tr>
<td>No Action necessary</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3.3.1
Ist der Propeller auf einem Turbinentriebwerk installiert, ist für die Bestimmung der Korrekturmaßnahmen die Überdrehzahlgrenze des betreffenden Turbinentriebwerkes (Fig. 3.3.2) maßgebend.

When a propeller installed on a turbine engine has an overspeed event, refer to the Turbine Engine Overspeed Limits (Fig 3.3.2) to determine the corrective action to be taken.
Ist der Propeller auf einem Turbinentriebwerk installiert, sind für die Bestimmung der Korrekturmaßnahmen die Torquegrenzen des betreffenden Turbinentriebwerkes (Fig. 3.3.3) maßgebend.

Unabhängig von dem etwaigen Ausmaß des Schadens ist ein Eintrag ins Logbuch vorzunehmen, um dieses Überdrehzahlvorkommnis zu dokumentieren.

When a propeller installed on a turbine engine has an overtorque event, refer to the Turbine Engine Overtorque Limits (Fig. 3.3.3) to determine the corrective action to be taken.

For engine mounted accessories (for example, governors, pumps, and propeller control units) manufactured by MT-Propeller, any overspeed at a severity level and/or duration sufficient to require at minimum a search inspection for the propeller, will require the accessory to be disassembled and inspected in accordance with the applicable maintenance manual.

Regardless of the degree of damage, make a log book entry to document the overspeed event.
6.13.1 Korrekturmaßnahmen

6.13.2 Keine Maßnahmen erforderlich

Wenn keine Maßnahme erforderlich ist, muß lediglich sichergestellt werden, daß die Überdrehzahl nicht durch einen mechanischen Defekt verursacht wurde.

6.13.3 Überdrehzahl - Inspektion

Eine Überdrehzahl-Inspektion setzt die Zerlegung des Propellers, gemäß dem aktuellen Instandhaltungshandbuch voraus sowie die Durchführung der folgender weiterer Inspektionen:

- General:

- Naben aus Aluminium:
 Visuelle Begutachtung der Blattlagerbereiche.

- Blätter aus Aluminium:
 Visuelle Begutachtung des Blattlager-Radius auf das eventuelle Vorhandensein von Schäden oder vorzeitigem Verschleiß. Dies erfordert das Entfernen der Lagerringe.

- Blätter aus Kunststoff:
 Sorgfältige Begutachtung und Abklopftest (mittels geeignetem Werkzeug) der betroffenen Fläche eines jeden Blattes einschliesslich der Edelstahl-Kantenbeschläge (Entfernung der Enteisungsgummis ist nicht erforderlich). Ein Drehmomentstest der Ankerschrauben ist durchzuführen.

6.13.1 Corrective Action

The corrective action is based on the severity and the duration of an overspeed or overtorque for a single event.

6.13.2 No Action Necessary

Where no action is necessary, no maintenance is necessary other than to verify that the overspeed was not caused by a mechanical problem.

6.13.3 Overspeed Inspection

An overspeed inspection requires the disassembly of the propeller in accordance with the appropriate propeller overhaul manual and performance of the following inspections:

- General
 Visually inspect for signs of abnormal wear and/or damage. Evidence of wear and/or damage should be further evaluated using the inspection criteria from the appropriate propeller or blade overhaul manual. Special attention must be given to blade retention components.

- Aluminum Hubs:
 Visually inspect the blade retention area of the blade socket.

- Aluminum Blades:
 Visually inspect the blade retention radius for evidence of damage or premature wear. This requires removal of the bearing races.

- Composite Blades:
 Perform a thorough visual and coin tap inspection of the exposed portion (de-ice boot removal not required) of each blade including the stainless steel leading edge. Perform a torque test of the lag screws.
6.13.4 Überholung
Sieht die Korrekturmaßnahme eine Überholung vor, so ist diese Überholung gemäß dem zutreffenden Überholungshandbuch durchzuführen.

6.13.5 Ausschuß
Sieht die Korrekturmaßnahme eine Verschrottung des Propellers vor, so ist der Propeller als luftuntüchtig einzustufen.

6.13.4 Overhaul
When an overhaul is the corrective action for an overspeed or an overtorque, the Propeller must be overhauled in accordance with the appropriate overhaul manual.

6.13.5 Scrap
When the corrective action requires scrapping the propeller, the propeller must be removed from service.
7.0 WARTUNG

7.1 Außer den in Punkt 6 beschriebenen Kontrollen sind keine besonderen Wartungsarbeiten vorgeschrieben. Für das Ausbessern von kleinen Schäden im Lack; Blattkörper und an den Kanten dürfen übliche PU- oder Acryllacke und Epoxy-Harze verwendet werden.

Falls Reparaturen selbst ausgeführt werden, die Trockenzeiten von Kunstharz und Lacksystemen beachten.

7.4 Reparaturen an Spinnerteilen sind nicht zulässig. Gerissene Spinnerdome und Füllbleche oder Spinnerträger sind durch lufttüchtige zu ersetzen.

7.0 MAINTENANCE

7.1 There is no special maintenance schedule for this propellers beyond the usual inspections as per item 6. For the repair of minor damages in the blade surface and edges, automotive material such as PU or acryl paint and Epoxy resin can be used.

7.2 The surface finish is made with PU lacquer or acryl lacquer. This material is resistant against nearly all solvents. The blades can be cleaned with normal car cleaners and polish. It is important to avoid moisture penetrating into the wooden core. If necessary, please consult an aircraft inspect or for final decision concerning repair.

If the repair is made locally, please observe the curing time of resin and paint systems.

7.3 There are no frequent maintenance works required on the hub because all moving parts are inside the hub and not exposed to the environment. Blade bearings and pitch change mechanism are filled with special lubricants and there is no need to refill between overhauls. A corrosion protection of the hub with thinned engine oil or anticorrosion spray is recommended.

7.4 Repair of spinner parts is not permissible. Cracked spinner domes, filler plates and backplates are to be replaced by airworthy parts.

Im Falle einer Bodenberührung ist die Nabe nur dann noch lufttüchtig, nachdem eine Rißprüfung und eine Überprüfung der Abmessung durchgeführt wurde und diese Überprüfungen keinen Hinweis auf eine Beschädigung ergeben. Bei Unklarheiten müssen sowohl Nabe als auch die gebrochenen Blätter an den Hersteller zur Überprüfung geschickt werden.

7.6 DYNAMISCHES WUCHTEN

7.6.1 Allgemein

7.6.1.1 Beim dynamischen Wuchten sind entsprechende Meßgeräte zu verwenden. Auf die Höhe der dynamischen Unwucht zu achten, üblicherweise soll die Rest-Unwucht nach einer solchen Maßnahme unter 0,2 IPS liegen.

7.6.1.2 Es ist den Anweisungen der Geräte-Hersteller für dynamisches Wuchten zu folgen.

7.6.1.3 Ist die festgestellte dynamische Unwucht größer als 1,2 IPS, muß der Propeller abgebaut und erst statisch nachgewuchtet werden.

7.5 Broken tips and damaged blades can be repaired by the manufacturer if a minimum of 85 % of the blade remains without cracks. Damages on the trailing edge can be repaired because the epoxy cover can be replaced and a new erosion sheet can be installed. Blades can be replaced individual or as a complete set. Always tell the serial no. of the propeller.

In case of a ground strike the hub is still airworthy if the crack- and dimensional inspection do not show any signs of a damage. In case of doubt send the affected hub as well as the broken blades to the manufacturer for evaluation.

7.6 DYNAMIC BALANCE

7.6.1 Overview

7.6.1.1 Dynamic balance is accomplished by using an accurate means of measuring the amount and location of the dynamic imbalance. After such a undertaking the remaining imbalance should be below 0,2 ips.

7.6.1.2 Follow the instructions from the equipment manufacturers for dynamic balance.

7.6.1.3 If the dynamic imbalance is bigger than 1,2 ips, the propeller must be removed and statically rebalanced.
7.6.2 KONTROLLVERFAHREN VOR DEM WUCHTEN

7.6.2.1 Vor dem dynamischen Wuchten ist eine Sichtkontrolle der Propelleranlage durchzuführen, nachdem der Propeller wieder an das Flugzeug angebaut worden ist.

ACHTUNG:
Bei der ersten Inbetriebnahme eines neuen oder überholten Propellers kann Fett an den Blättern und an der inneren Oberfläche des Propellerspinners zu sehen sein. Das ist normal und kein Anzeichen einer dauernden Fettleckage.

Ausgetretenes Fett an den Blattwurzeln oder im Inneren des Spinners ist mit einem milden Lösungsmittel komplett zu entfernen.

Kleinere Fettmengen, sichtbar an einer oder mehreren Blattwurzel(n) sowie am Spinner weiter beobachten, ob eine Verschlechterung eintritt.

Wenn innerhalb von 5 Flugstunden das Fett ausserhalb der Blattwurzel nicht an mehr als 18 cm (7 inches) auf der Blattoberfläche vorhanden ist, wird die Fettleckage als unerheblich eingestuft und sollte lediglich beobachtet werden.

Eine fortbestehende Fettleckage nach 20 Flugstunden ab dem Auftreten der ersten Leckage erfordert eine Reparatur in einem autorisierten Servicebetrieb. Im Zweifelsfall ist der Hersteller zwecks weiterer Vorgehensweise zu informieren!

7.6.2 INSPECTION PROCEDURES PRIOR TO BALANCING

7.6.2.1 Visually inspect the propeller assembly after it has been reinstalled on the aircraft prior to dynamic balancing.

NOTE:
The first run-up of a new or overhauled propeller may leave grease on the blades and inner surface of the spinner dome. This is normal and do not mean that it will be a continuing grease leakage.

Remove any grease on the blades or inner surface of the spinner dome by using a mild solvent.

Minor grease leak which can be seen on one or all blade root(s) and spinner should be monitored if it gets worse.

If the grease leak does not spray more than 7 inches (18 cm) on the blade surface from the blade root outside the blade ferrule in 5 hours of operation, it is defined as minor and should be only monitored!

Continued grease leakage after 20 hours of operation from first leakage requires repair at an authorized service repair facility within 5 operating hours. In case of doubt, contact manufacturer for further action!
Vor dem dynamischen Wuchten sind Anzahl und Position der Wuchtgewichte aus der statischen Wuchtung zu notieren.

Es wird empfohlen, die Wuchtgewichte an Aluminium-Spinnerträgern, die vorher nicht durchbohrt wurden, radial anzubringen.

Die radiale Lage soll außerhalb des Schleif-Rings und innerhalb der Biegung liegen, an der der Spinnerträger die Befestigungsfläche für den Spinnerdom bildet.

Es sind Bohrlöcher für die Verwendung von AN3 () Bolzen mit Sicherungsmuttern akzeptabel.

Alle angebrachten Wuchtgewichte dürfen nicht die Zelle des Flugzeuges (Cowling), die Enteisungsanlage bzw. das Triebwerk beim Rotieren berühren.

In case no spinner is installed, mount balance weights in the mounting threads in the hub, where normally the spinner bulkhead is mounted.

ANBRINGUNG DER WUCHTGWEICHTE FÜR DIE DYNAMISCHE WUCHTUNG

Vorzugsweise werden die dynamischen Wuchtgewichte am Spinnerträger befestigt. An der Spinnerstürzplatte sind die statischen Wuchtgewichte angebracht, falls zutreffend.

Falls vorhanden, wird durch das Entfernen der dynamischen Wuchtgewichte der Propeller in seine ursprüngliche statische Wucht gebracht. Die statischen Wuchtgewichte dürfen nur ausnahmsweise entfernt werden.

Verwenden Sie nur Edelstahl bzw. kadmierte Scheiben als Wuchtgewichte am Spinnerträger.

Prior to dynamic balance record the number and location of all balance weights from the static balance.

It is recommended that placement of balance weights on aluminum spinner bulkheads which have not been previously drilled be placed in a radial location.

The radial location should be outboard of the slip ring and inboard of the bend at which point the bulkhead creates a flange to attach the spinner dome.

Drilling holes for use with the AN3-() type bolts with self-locking nuts is acceptable.

All hole/balance weight locations must take into consideration, and must avoid, any possibility of interfering with the adjacent airframe, deice and engine components.

In case no spinner is installed, mount balance weights in the mounting threads in the hub, where normally the spinner bulkhead is mounted.

PLACEMENT OF BALANCE WEIGHTS FOR DYNAMIC BALANCE

The preferred method of attachment of dynamic balance weights is to add the weights to the spinner bulkhead. The static balancing weights are installed on the spinner front plate, if applicable.

Subsequent removal of the dynamic balance weights, if they exist, will return the propeller to its original static balance condition. The static balance weights are only allowed to remove exceptionally.

Use only stainless or plated steel washers as dynamic balance weights on the spinner bulkhead.
7.6.3.4 Das maximale Wuchtgewicht an einer Position darf 50 g nicht überschreiten. Das entspricht etwa 08 Stück AN970-() Scheiben. Wenn mehr Gewicht benötigt wird, dann auf 2 Positionen aufteilen.

7.6.3.5 Die Wuchtgewichte sind mit 10-32 inch Schrauben oder gleichwertigen Schrauben anzubringen. Die Qualität muß allgemeinen Flugzeughersteller-Standards entsprechen.

7.6.3.6 Die Schrauben der Wuchtgewichte müssen nach der Installation mindestens einen Gewindegang und höchstens vier Gewindegänge aus der Stoppmutter herausstehen.

7.6.3.7 Alle dynamisch gewuchteten Propeller müssen am Blatt Nr. 1 einen Aufkleber erhalten. Dieser informiert das Wartungspersonal, daß die installierten Wuchtgewichte nicht der statischen Wuchtung entsprechen.

7.6.3.8 Falls Änderungen durchgeführt wurden, ist die Position der statischen und dynamischen Wuchtgewichte im Propeller-Logbook einzutragen.

7.6.3.4 Do not exceed maximum weight per location of 50 g. This is approximately equal to 08 pieces of AN970 style washers. If more weight is needed split to 2 locations.

7.6.3.5 Weights are to be installed using aircraft quality 10-32 inch screws of bolts or similar.

7.6.3.6 Balance weight screws attached to the spinner bulkheads must protrude through the self-locking nuts a minimum of one thread and a maximum of four threads.

7.6.3.7 All propellers which have been dynamically balanced must install a decal on blade no. 1. This will alert repair station personnel that the existing balance weight configuration may not be correct for static balance.

7.6.3.8 Record number and location of dynamic balance weights, and static balance weights if they have been reconfigured, in the Propeller Logbook.
8.0 **STÖRUNGEN UND BESIEITIGUNG**

8.1 **Falsche Drehzahl:**

Propeller und Regler können im Feld nachgestellt werden. Bevor diese im Werk eingestellten Werte verändert werden, muß unbedingt der Drehzahlmesser geeicht werden.

Üblicherweise treten folgende Probleme auf:
- zu niedrige Standdrehzahl und/oder
- zu hohe Flugdrehzahl,
- zu hohe Bremsstellungsdrehzahl

8.1.1 **Zu niedrige Standdrehzahl:**

Um festzustellen, ob Regler oder Propeller die Drehzahl begrenzen, muß wie nachfolgend beschrieben, vorgegangen werden:
- Reglerhebel ganz auf max. Drehzahl
- Leistungshebel langsam auf Vollgas
- Reglerhebel zurückziehen, bis Drehzahl um ca. 25 rpm abfällt.
- Ist großer Weg nötig, um den Drehzahlabfall zu erreichen, be- grenzt der Propeller durch die hohe Steigung die Standdrehzahl.

Abhilfe - Bei Propellern mit Doppel-Kolben-System
Steigung mit den 3 (2, MTV-21 bzw. 4, MTV-14, MTV-16) Anschlagstangen ändern. Herausdrehen der Anschlagstangen um ¼ Umdrehung wird eine Drehzahlerhöhung um ca. 80 rpm ergeben.

8.0 **TROUBLE SHOOTING**

8.1 **Improper rpm:**

There are means on propeller and governor to adjust pitch and rpm in the field. Before the original adjustments are changed, please calibrate the tachometer.

Usually there are the following problems:
- static rpm is too low and/or
- rpm in flight is too high,
- reverse rpm too high.

8.1.1 **Static rpm too low:**

To find out whether the governor or the propeller limit the engine, proceed as follows.
- Propeller control to max. rpm.
- Power lever to max. power.
- Pull propeller control back until rpm drops approx. 25 rpm.
- If there is a long way necessary to get the rpm drop, the pitch of the propeller will limit the static engine rotational speed.

Remedy - Propellers with Dual-Piston-System
Adjust pitch by use of the 3 (2, MTV-21 or 4, MTV-14, MTV-16) pitch stop rods. Turning out of the pitch stop rods by ¼ rotation means an rpm increase of approx. 80 rpm
Achtung:
Während der Einstellung darauf achten, dass die Anschlagsstangen nicht zu weit herausgedreht werden, da sonst die Gefahr besteht, dass der Kolben aus dem zylindrischen Bereich der Nabe springt und die Nabe dadurch mit Öl kontaminiert wird, was eine komplette Propellerzerlegung in einem autorisierten Servicebetrieb erforderlich machen würde.

Wichtig - bei Propellern mit Doppel-Kolben-System
Die 3 (2 oder 4) Anschlagstangen müssen zueinander immer gleich eingestellt werden, ansonsten muß mit einer Beschädigung der Verstellmechanik gerechnet werden.

Fällt die Drehzahl sofort nach der geringsten Betätigung ab, begrenzt der Regler die Standdrehzahl.

Abhilfe: Reglerdrehzahl durch Herausdrehen der Anschlagschraube am Reglerhebel erhöhen. Eine Umdrehung erhöht die Drehzahl um ca. 25 rpm

Wichtig Der Bedienzug muß genügend Weg freigegeben, daß der Reglerhebel auch die Anschlagschraube berührt. Anschlagschraube sichern.

Attention:
During adjusting take care that the stop rods are not turned out too much, otherwise it is possible the the piston jumps out of the pitch change cylinder and the hub is full of oil, which requires a complete propeller disassembly at a certified propeller repair shop.

Important - Propellers with Dual-Piston-System
The 3 (2 or 4) pitch stop rods must always have the same setting towards each other. Otherwise the pitch change mechanism will be damaged.

If the rpm drops immediately after a small movement of the lever, the governor will limit the static rotational speed.

Remedy: Increase governor rpm unscrewing the stop screw. One turn on the screw will change rpm by approx. 25 rpm

Important: The control must be long enough to have the necessary way in order to contact the stop. Secure screw with safety wire.
8.1.2 Flugdrehzahl zu hoch:
Wenn die Standdrehzahl richtig ist, kann nur der Regler Überdrehzahlen zulassen. Im Flug die Drehzahl mit dem Reglerhebel einstellen und nach der Landung die Anschlagschraube des Reglers soweit hineindrehen, bis diese am Reglerhebel anliegt.

Wichtig:
Die Stellung des Reglerhebels im Landeanflug nicht mehr verändern, damit die Stellung erhalten bleibt. Anschlagschraube sichern.

8.2 Blattspitzenspiel
8.2.1 Wackeln des Blattes
Ursache: Blatlagerung hat sich gesetzt
Behebung: Bei mehr als 3 mm, Propeller zur Korrektur ins Werk oder eine zugelassene Werkstatt, um die Vorspannung der Blattlagerung zu korrigieren.

8.2.1.1 SMA Anwendung
Ursache: Blatlagerung hat sich gesetzt
Behebung: Blattspitzenspiel ist nicht zulässig. Bei Auftreten eines Blattspitzenspieles ist der Propeller an das Werk oder an die nächste zugelassene Werkstatt zu senden, um dort die Vorspannung der Blattlagerung zu korrigieren.

8.1.2 Rpm in flight too high:
If the static rpm is within the limits, only the governor allows overspeed. Adjust rpm to the desired value in flight an turn the stop screw in after landing until it touches the governor lever.

Important:
Do not change position of the rpm control during final approach, in order to keep the position. Secure screw with safety.

8.2 Blade shake
8.2.1 Fore and aft movement
Cause: Blade bearing loose
Remedy: If more than 3 mm, return propeller to the factory or any approved repair station to correct the pre-load of the blade retention bearing.

8.2.1.1 SMA Application
Cause: Blade bearing loose
Remedy: NO blade shake is allowed. In case of blade shake return propeller to the factory or any approved repair station to correct the pre-load of the blade retention bearing.
8.2.2 Verdrehen des Blattes

Ursache: Blattlagerung hat sich gesetzt und/oder Spiel durch Abnutzung in der VerstellEinrichtung (Vertellzapfen, Gleitstein)

Behebung: Bei mehr als 2°, Propeller zur Korrektur ins Werk oder eine zugelassene Werkstatt.

8.3 Träge Verstellung bei Prüfung am Boden

Ursache: 1. Kaltes Öl (zähflüssig)
2. Schwergängigkeit der VerstellEinrichtung

Behebung: 1. Motor ausreichend warm laufen lassen

8.4 Drehzahlschwankungen (An- und Abschwellen)

Ursache: 1. Luft im System
2. Ölschlamm im System
3. Falsche Reglerfeder
4. Falsche Grundeinstellung der Blattwinkel im Propeller
5. Abrupte Betätigung Drehzahlhebels
6. Falsche Vergasereinstellung
7. Pendeln der Tachowelle

2. Reinigung der Ölleitungen im Motor, im Verstellzyliner des Propellers und evtl. im Regler

8.2.2 Blade angle play

Cause: Blade bearing loose by seating and/or increased play by wear in the pitch change mechanism (pitch change pin, pitch change block)

Remedy: If more than 2°, return propeller to the factory or any approved repair station.

8.3 Sluggish rpm change

Cause: 1. Oil is cold
2. Excessive friction

Remedy: 1. Run the engine until the green arc of the oil temperature is reached.
2. Move blades by turning them with hands within the angular blades. If excessive friction exists, the blade retention system has to be inspected, contact factory.

8.4 Surging rpm

Cause: 1. Trapped air in propeller piston
2. Sludge deposit
3. Wrong speeder spring in the governor
4. Wrong pitch stops in the propeller
5. Abrupt movement of propeller or throttle control
6. Wrong carburetor setting
7. Oscillating tachometer

Remedy: 1. Move propeller control at least twice every time before flying at about 1800 rpm with a drop of about 500 rpm.
2. Clean oil tubes in the motor, in the propeller piston and eventually in the governor (only possible at the manufacturer's).
3. Prüfe Reglerbezeichnung mit der Angabe im Flugzeugkennblatt. Wenn die Drehzahl sich nach 5 Perioden nicht stabilisiert, Werk verständigen.
5. Reglerhebel gleichmäßig und langsam betätigen.
6. Berichten
7. Störung beseitigen.

8.5 Drehzahlunterschiede zwischen Steigflug, Reiseflug und Sinkflug bei gleicher Drehzahleinstellung
Bis ± 50 rpm normal, systembedingt, darüber:

Ursache: 1. Schwergängigkeit im Propeller
2. Schwergängigkeit im Regler
3. Drehzahlmesser

Behebung: 1. Werk verständigen.
2. Werk verständigen.

8.6 Drehzahlabfall während des normalen Betriebes ohne Betätigung des Drehzahlhebels

Ursache: 1. Ölleckage äußerlich sichtbar
2. Öltemperatur zu hoch
3. Leckage im Ölübertragungssystem zwischen Regler und Propeller verursacht Vergrößerung des Blatteinstellwinkels.
4. Innere Leckage im Propeller
5. Versagen des Reglerantriebes oder des Überdruckventils im Regler.
6. Schmutz im Kraftstoffsystem

3. Check that the governor part number corresponds to the aircraft data sheet. If the rpm does not stabilize after 5 periods this is an indication for a wrong speeder spring, contact factory.
4. Compare pitch values to those of the data sheet. Note static rotational speed.
5. Move the controls carefully and slowly.
7. Check tachometer and drive.

8.5 Rpm variations between ascend, cruise and descend although having identical propeller setting

Up to ± 50 rpm normal condition. If more:

Cause: 1. Excessive friction in the hub
2. Excessive friction in the governor
3. Worn rpm tachometer

Remedy: 1. Contact manufacturer.
2. Contact manufacturer.
3. Replace/repair instrument.

8.6 Rpm decrease during normal operation without change of propeller lever position

Cause: 1. External oil leakage
2. Excessive high oil temperature
3. Worn oil transfer system causes a increase in blade angle of attack.
4. Internal leakage in the propeller.
5. Governor drive failure or broken relief valve spring.
6. Dirt in the fuel system or carburetor.
Behebung:
1. Dichtungen ersetzen
2. Öltemperatur reduzieren durch höhere Fluggeschwindigkeit
4. Werk verständigen
5. Werk verständigen. Regler auswechseln.
6. Anlage reinigen.

Achtung:
Der Flug kann fortgesetzt werden mit beträchtlicher Verminderung der Drosselstellung, damit ein unzulässig hoher Ladedruck vermieden wird. Die Drehzahl bleibt niedrig.

8.7 Drehzahlanstieg während des normalen Betriebes ohne Betätigung des Drehzahlhebels

Ursache: 1. Versagen der Reglerfeder oder Klemmen des Steuerschiebers im Regler
2. Störung am Betätigungszug des Drehzahlhebels

2. Störung suchen, beseitigen.

8.8 Extreme Trägheit oder Versagen der Verstellung nach Betätigung des Drehzahlhebels (Drehzahl ändert sich mit Änderung des Flugzustandes wie bei einem festen Propeller)

Ursache: 1. Verschlossene Ölleitungen
2. Ölschlammrückstände im Zylinder des Propellers
3. Schäden an der Verstelleinrichtung im Propeller
4. Korrosion in den Blattlagern

Remedy:
1. Check for oil leaks, replace gaskets,
2. decrease oil temperature with higher airspeeds.
3. If the system works with cold oil and fails at high oil temperature, this will indicate high leakage in the oil transfer system on the propeller shaft. Repair engine.
4. Contact manufacturer.
5. Check governor drive and governor on the test bench.
6. Clean or repair.

8.7 Rpm increase during normal operation without change of propeller lever position

Cause: 1. Speeder spring in the governor broken or sticking pilot valve.
2. Control inoperative.

Remedy: 1. Check governor on the test bench.
2. Check free movement and positive stop contact.

8.8 Extremely slow pitch change or no pitch change on ground (rpm changes with airspeed like a fixed pitch propeller)

Cause: 1. Blocked oil line.
2. Sludge deposit in propeller piston.
3. Damaged pitch change mechanism.
Behebung:
1. In Werkstatt Motor reinigen
2. Reinigen von Propeller und Flanschanschluß

Zu 1. und 2.:
Versagen der Verstellung tritt hier nicht, plötzlich auf.
Die Funktion verschlechtert sich allmählich. Sollte bei der Vorflugkontrolle festgestellt werden.

3. Werk verständigen.
 Dieser Fehler kann plötzlich auftreten.
4. Propeller zur Reparatur schicken.

Remedy:
1. Check engine.
2. Clean propeller and crankshaft.

Concerning 1 and 2: This behavior does not appear at once and gets worse after some time. It should be observed at the preflight inspection.

3. Contact manufacturer.
 This error may appear suddenly.
4. Repair propeller.

Ölleckage (äußerlich sichtbar oder nicht)

Ursache: Beschädigte Dichtungen

Behebung: Dichtungen ersetzen oder Propeller zur Reparatur.

8.9 Oil leakage (visible outside or hidden inside)

Cause: Damaged gasket

Remedy: Replace gaskets or repair propeller.

Rauher Lauf des Triebwerks, ggf. nur in bestimmtem Drehzahlbereich

Ursache: 1. Schlechte statische Wucht
 2. Schlechte dynamische Wucht
 3. Betrieb in gesperrtem Drehzahlbereich

8.10 Rough running engine, possibly in limited rpm range only

 2. Bad dynamic balance.
 3. Operation in restricted rpm range.

Remedy: 1. Rebalance statically, mount balance weights to forward spinner bulkhead.
 2. Rebalance dynamically. Install balance weights to rear spinner bulkhead. See item 7.6.3.
 3. Refer to airplane flight manual. Check rpm gauge for correct reading. Repair or replace if necessary.
8.11 Langsame oder keine Bremsstellung

Ursache:
1. zu hohe Triebwerkstemperaturen
2. zu hohe innere Leckage
3. zu niedriger Überdruck des Hochdruckventils
4. Beschädigung des Kabelbaums für das Magnetventil
5. Schwergängigkeit der Propellerblätter
6. Defekter Reverse Schalter Nr. 4 (Siehe Seite 17-1)

Behebung:
1. Triebwerk bzw. Ölkühler überprüfen
2. Triebwerk überprüfen, see z.B. Lycoming S.I. 1462A (Um eine sichere Reverse-Funktion zu gewährleisten ist ein Mindestdruck zwischen 10 psi und 35 psi erforderlich).
5. Propeller zur Reparatur schicken.
6. Reverse Schalter auswechseln.

Achtung:
* Falls nur ein Propeller bei zweimotorigen Flugzeugen in Reverse fährt, sofort Reverse deaktivieren. *

8.11 Slow Reversing or No Reversing

Cause:
1. High engine temperatures
2. High internal leakage
3. Low relief valve pressure
4. Damage of the wire harness
5. Sticking blades
6. Damaged Reverse Switch No. 4 (Refer to page 17-1)

Remedy:
1. Check engine or oil cooler
2. Check engine, see for example Lycoming S. I. 1462A (To ensure a reliable operation a minimum pressure read out between 10 psi and 35 psi is required).
3. Reset the high pressure relief valve, contact manufacturer.
4. Inspect wire harness and installed safety steps. Refer to see page 17-1.
4. Repair propeller
6. Replace Reverse Switch

Warning:
* If only one propeller is entering beta-range, on twin engine aircrafts, deactivate reverse immediately. *
8.12 Langsame Segelstellung

Falls Segelstellung nicht innerhalb 10 Sekunden erreicht wird, ist entweder die Verstellung der Blätter schwergängig, die Segestellungsfeder gebrochen, der Bedienzug zu lang oder die Reglereinstellung falsch. Sind keine offensichtlichen Mängel vorhanden, Regler überprüfen lassen.

8.13 Propeller fährt nicht aus Reverse-Stellung

8.14 Bei einem Doppelmagnetventil-Regler ist die Schaltuhr auf eine längere Öffnungsperiode des Reverse-Magnetventil’s einzustellen. Normalerweise beträgt die Öffnungszeit 6 bis 8 Sekunden. Die Funktion der Schaltuhr ist zu überprüfen!

8.12 Slow Feathering

If more than 10 sec. are needed for full feathering, there is one of the following problems: sticking blades or pitch change mechanism, control too long or wrong adjusted governor. If no discrepancies are found during inspection, check governor on a test bench.

8.13 Propeller does not return out of Full Reverse

After switching off reverse but if blades do not reach a positive blade angle after 5 seconds, the splitted sleeve valve, which should drop the reverse pressure, sticks together. Pull the propeller lever to low rpm, propeller will return to positive pitch. Propeller is in normal operation again. By selecting reverse a few times the splitted sleeve valve should become free again. If not, check governor on test bench. Normal operation without any limitation possible also with sticking splitted sleeve valve.

8.14 On a dual valve governor adjust the timer to a longer opening time of the out of reverse magnetic valve. The normal opening time is 6 to 8 seconds. Check the function of the timer!
VERSAND UND LAGERUNG

Es wird empfohlen, alles Zubehör mit in das Werk zu schicken, damit dieses auch überprüft werden kann bzw. wegen Fehlens nicht ersetzt werden muß.

9.3 Das Überholungsintervall (TBO) beginnt mit dem Einbau in das Flugzeug. Wenn jedoch seit der Herstellung oder Überholung, unter Voraussetzung sachgemäßer Lagerung, mehr als 24 Monate vergangen sind, beginnt die TBO automatisch nach diesen 24 Monaten bis maximal 96 Monate Kalenderzeit.

9.4 Falls der Propeller länger als 24 Monate gelagert wurde, kann der Propeller vor dem Anbau an das Flugzeug zerlegt und sämtliche Dichtungen gewechselt werden. Dies bringt die Kalenderzeit-TBO wieder auf Null zurück.

SHIPPING AND STORAGE

9.1 For any shipment of the propeller use original container. If this is impossible it will be very important to fix the propeller at the blades and the hub, if necessary, in a manner that avoids damage.

In case of returning the propeller it is furthermore recommended to return all accessories and parts together with the propeller. They will also be inspected and not considered to be missing.

9.2 If the propeller is stored for a longer period of time, preferably use the original container or an equivalent one. Storage only in a controlled environment (temperature - 5°F to 95°F, rel. humidity 10 % to 75 %). Avoid extreme temperature/humidity differences or cycles. All metal surfaces should have anti-corrosion protection which is easy to remove. There is no need to protect the blades because its lacquer is sufficient.

9.3 The TBO starts with the installation on the aircraft. However, if the installation is later than 24 months after new assembly or overhaul and proper storage provided, the TBO automatically starts after this 24 months, up to maximal 96 months calendar time.

9.4 If the propeller is stored for longer than 24 months it can be disassembled before installing to the aircraft and all seals have to be replaced. This will bring calendar time TBO back to zero.

9.6 Propeller, die in aggressiver Umgebung transportiert oder gelagert werden (wie Nebelgebiete oder Salzwasserumgebung), sollten auf den sichtbaren Metalloberflächen mit einem dünnen Film von Leichtmaschinenöl bestrichen werden.

9.8 Akzeptanzprüfung:
Begutachten Sie äußerlich die Transportbox auf Transportschäden, speziell an den Kanten der Box. Ein Loch, ein Riss oder eine Quetschung an den Enden der Box (im Bereich der Propellerblattspitzen) deuten auf einen Transportschaden hin.

Nach dem Auspacken müssen besonders die Blattspitzen auf Transportschäden geprüft werden.
10.0 Lufttüchtigkeitsbeschränkungen

Dieser Abschnitt über Lufttüchtigkeitsbeschränkungen ist EASA zugelassen gemäß Part 21A.31(a)(3) und CS-P40(b) und 14 CFR Part 35.4 (A35.4) und JAR-P20(e). Jede Änderung bezüglich der vorgeschriebenen Austauschzeiten, Inspektionszeiträume und sonstiger Vorgänge, die die Lufttüchtigkeitsbeschränkung, die in diesem Abschnitt beinhaltet sind, bedürfen der Genehmigung.

Dieser Abschnitt der Lufttüchtigkeitsbeschränkungen ist FAA zugelassen und spezifiziert Wartungen, die unter §§ 43.16 und 91.403 der 14 CFR erforderlich sind, es sei denn, ein alternatives Programm ist von der FAA zugelassen worden.

10.0 Airworthiness Limitations Sections

This Airworthiness Limitations Section (ALS) is EASA approved in accordance with Part 21A.31(a)(3) and CS-P40(b) and 14 CFR Part 35.4 (A35.4) and JAR-P20(e). Any change to mandatory replacement times, inspection intervals and related procedures contained in this ALS must also be approved.

The Airworthiness Limitations Section is FAA approved and specifies maintenance required under 14 CFR §§ 43.16 and 91.403 of the 14 CFR unless an alternative program has been FAA approved.
11.0 SPECIAL TOOLS

No special tools are needed to service these propellers.

11.0 SPEZIALWERKZEUGE

Es werden für diese Propeller keine Spezialwerkzeuge benötigt.