EASA

TYPE-CERTIFICATE
DATA SHEET

Number: P.104
Issue: 04
Date: 17 November 2014
Type: MT-Propeller Entwicklung GmbH
MTV-27 series propellers

Models
MTV-27-1

List of effective Pages:
I. General

1. Type / Models

MTV-27 / MTV-27-1

2. Type Certificate Holder

MT-Propeller Entwicklung GmbH
Flugplatzstraße 1
94348 Atting
Germany

Design Organisation Approval No.: EASA.21J.020

3. Manufacturer

MT-Propeller Entwicklung GmbH

4. Date of Application

MTV-27-1: 07 November 1997

5. Reference Date for Determination of the Applicable Requirements

07 November 1997

6. Certification Date

MTV-27-1: 28 March 2002

II. Certification Basis

1. Airworthiness Standards

Note:
Application was made to LBA-Germany before EASA was established. The applicable airworthiness standards were established in accordance with the rule in Germany at the time of application.
MTV-27-1

<table>
<thead>
<tr>
<th>Model</th>
<th>Wooden Blades:</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTV-27-1</td>
<td>-52, -87, -88, -89</td>
<td>JAR-P Change 7 dated October 22, 1987, as amended by Amendment P/96/1 dated August 08, 1996, CS-P 360, CS-P 380, CS-P 390, CS-P 400, CS-P 560 (Amendment 01 dated 16 November 2006)</td>
</tr>
<tr>
<td>MTV-27-1-N-C-F-J</td>
<td>-82, -83, -84</td>
<td>JAR-P Change 7 dated October 22, 1987, as amended by Amendment P/96/1 dated August 08, 1996, CS-P 360, CS-P 380, CS-P 390, CS-P 400, CS-P 560 (Amendment 01 dated 16 November 2006)</td>
</tr>
</tbody>
</table>

III. Technical Characteristics

1. **Type Design Definition**

 The MTV-27-1 propeller model is defined by a main assembly drawing and associated parts list:

 - MTV-27-1-("1) and MTV-27-1-(*1)-C “Constant Speed” and
 - MTV-27-1-("1)-C-F “Constant Speed, Feather”:
 - Drawing No. P-565 dated 04 December 2001 (*2)
 - Parts List No. S-081 dated 04 December 2001 (*2)
 - MTV-27-1-("1)-C-F-R(M) “Constant Speed, Feather, Reverse (System Mühlbauer)”:
 - Drawing No. P-557-A dated 04 December 2001 (*2)
 - Parts List No. S-080-A dated 04 December 2001 (*2)
 - MTV-27-1-("1)-C-F-R(P) “Constant Speed, Feather, Reverse (System Pratt & Whitney)”:
 - Drawing No. P-467-D dated 13 February 2001 (*2)
 - Parts List No. S-051-B dated 04 December 2001 (*2)
 - MTV-27-1-("1)-C-F-R(G) “Constant Speed, Feather, Reverse (System Garrett)”:
 - Drawing No. P-635-E dated 07 December 2000 (*2)
 - Parts List No. S-109-C dated 04 December 2001 (*2)
 - MTV-27-1-E-C-F-R(W) “Constant Speed, Feather, Reverse (System Walter)”:
 - Drawing No. P-760-1 dated 03 December 2001 (*2)
 - Parts List No. S-141 dated 03 December 2001 (*2)
MTV-27-1-N-C-F-J "Constant Speed, Feather":
Drawing No. P-1151-1 dated 09 February 2010 (*2)
Parts List No. S-184-1-A dated 26 August 2010 (*2)

MTV-27-1-N-C-F-R(G)-J "Constant Speed, Feather, Reverse (System Garrett)":
Drawing No. P-1151-A dated 10 February 2010 (*2)
Parts List No. S-184-B dated 26 August 2010 (*2)

MTV-27-1-N-C-F-R(P)-J "Constant Speed, Feather, Reverse (System Pratt & Whitney)":
Drawing No. P-1329 dated 25.07.2013 (*2)
Parts List No. S-200 dated 07.10.2013 (*2)

Note:
(*1) Three versions of hub flanges are available:
- E = ARP 880
- N = BCD 5.125 in, twelve 9/16"-18 UNF studs, two dowels
- H = Similar to N except for dowel location

(*2) Or later approved revision. Following a revision, the Drawing No. or the Parts List No. includes the corresponding revision letter, e.g. from P-565 in P-565-A.

2. Description

5-blade variable pitch propeller with a hydraulically operated blade pitch change mechanism providing the operation mode "Constant Speed", "Feather" and "Reverse". The hub is milled out of aluminum alloy. The blades have a laminated wood structure with a composite fiber cover. The leading edge of the blade is protected by a stainless steel or nickel erosion protection sheath. Optional equipment includes spinner and ice protection equipment.

3. Equipment

Spinner: according to MT-Propeller Service Bulletin No. 13
Governor: according to MT-Propeller Service Bulletin No. 14
Ice Protection: according to MT-Propeller Service Bulletin No. 15

4. Dimensions

Propeller diameter: Wooden blades: 190 cm to 300 cm

5. Weight

Depending on propeller-design configuration and blade material:
Wooden Blades
"Constant Speed": approx. 55 kg
"Constant Speed, Feather": approx. 68 kg
"Constant Speed, Reverse": approx. 68 kg
"Constant Speed, Feather, Reverse": approx. 74 kg
6. **Hub/Blade-Combinations**

<table>
<thead>
<tr>
<th>Hub</th>
<th>Blades</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTV-27-1-() except MTV-27-1-J</td>
<td>Wooden Blades:</td>
</tr>
<tr>
<td>MTV-27-1-()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wooden Blades:</td>
</tr>
<tr>
<td></td>
<td>-82, -83, -84</td>
</tr>
</tbody>
</table>

7. **Control System**

8. **Adaptation to Engine**

Hub flanges as identified by a letter-code in the propeller designation (refer to note VI. 7.)

9. **Direction of Rotation**

Direction of rotation (viewed in flight direction) as identified by a letter-code in the propeller designation (refer to note VI. 7.)

IV. Operational Limits

1. **Approved Installations:**

Propeller/engine/aircraft combinations that have been demonstrated to comply with the requirements of JAR-P 60(b), 160(b), 190, and 220 are listed in MT-Propeller Service Bulletin No. 16.

(see also note VI. 5.)
2. Maximum Take Off Power and Speed

<table>
<thead>
<tr>
<th>Max. Take Off Power (kW)</th>
<th>Max. Take Off Speed (rpm)</th>
<th>Diameter (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTV-27-1-() except MTV-27-1-()-J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>634</td>
<td>2200</td>
<td>190 to 250</td>
</tr>
<tr>
<td>858</td>
<td>2200</td>
<td>190 to 220</td>
</tr>
<tr>
<td>858</td>
<td>1607</td>
<td>190 to 250</td>
</tr>
<tr>
<td>954</td>
<td>2000</td>
<td>190 to 235</td>
</tr>
<tr>
<td>954</td>
<td>1700</td>
<td>190 to 270</td>
</tr>
</tbody>
</table>

3. Maximum Continuous Power and Speed

<table>
<thead>
<tr>
<th>Max. Continuous Power (kW)</th>
<th>Max. Continuous Speed (rpm)</th>
<th>Diameter (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTV-27-1-() except MTV-27-1-()-J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>634</td>
<td>2200</td>
<td>190 to 250</td>
</tr>
<tr>
<td>858</td>
<td>2200</td>
<td>190 to 220</td>
</tr>
<tr>
<td>858</td>
<td>1607</td>
<td>190 to 250</td>
</tr>
<tr>
<td>954</td>
<td>2000</td>
<td>190 to 235</td>
</tr>
<tr>
<td>954</td>
<td>1700</td>
<td>190 to 270</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max. Continuous Power (kW)</th>
<th>Max. Continuous Speed (rpm)</th>
<th>Diameter (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTV-27-1-()-J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1231</td>
<td>2000</td>
<td>190 to 250</td>
</tr>
<tr>
<td>1231</td>
<td>1568</td>
<td>190 to 300</td>
</tr>
<tr>
<td>1268</td>
<td>1700</td>
<td>190 to 300</td>
</tr>
</tbody>
</table>

4. Propeller Pitch Angle

from -20° up to +86° measured at 75% radius station
V. Operating and Service Instructions

<table>
<thead>
<tr>
<th>Manual and Parts List</th>
<th>No.</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation and Installation Manual for hydraulically controlled variable pitch propeller</td>
<td>E-124</td>
<td>05 March 2014 (*)</td>
</tr>
<tr>
<td>Operation and Installation Manual for reversible hydraulically controlled variable pitch propeller; Reverse-Systems (M)</td>
<td>E-504</td>
<td>14 March 2013 (*)</td>
</tr>
<tr>
<td>Operation and Installation Manual for reversible hydraulically controlled variable pitch propeller; Reverse-Systems (G), (P), (W)</td>
<td>E-610</td>
<td>15 Nov. 2013 (*)</td>
</tr>
<tr>
<td>Operation and Installation Manual for reversible hydraulically controlled variable pitch propeller MTV-16-1, MTV-27-1, -2</td>
<td>E-1083</td>
<td>16 April 2012 (*)</td>
</tr>
<tr>
<td>Overhaul Manual and Parts List for hydraulically controlled variable pitch propeller</td>
<td>E-220</td>
<td>21 May 2014 (*)</td>
</tr>
<tr>
<td>Overhaul Manual and Parts List for reversible hydraulically controlled variable pitch propeller; Reverse-Systems (M)</td>
<td>E-519</td>
<td>07 July 2010 (*)</td>
</tr>
<tr>
<td>Overhaul Manual and Parts List for for reversible hydraulically controlled variable pitch propeller; Reverse-Systems (G), (P), (W)</td>
<td>E-680</td>
<td>17 Sep. 2014 (*)</td>
</tr>
<tr>
<td>Overhaul Manual Metal Blades</td>
<td>E-809</td>
<td>27 Aug. 2010 (*)</td>
</tr>
<tr>
<td>Composite Blade Overhaul Manual (**)</td>
<td>E-1290</td>
<td>10 Sep. 2014 (*)</td>
</tr>
</tbody>
</table>
| Service Bulletins, Service Letters, Service Instructions | | as published by MT-propeller (*) or later approved revision (**) also applicable to wooden blades
VI. Notes

1. The EASA approved Airworthiness Limitations Section of the Instructions for Continued Airworthiness is published in the applicable "Operation and Installation Manual" document, chapter 1. "General and Airworthiness Limitations Section".

2. The recommended overhaul intervals are published in MT-Propeller Service Bulletin No.1.

3. The suitability of a propeller for a certain aircraft/engine combination must be demonstrated within the scope of the type certification of the aircraft.

4. Some models of this propeller can incorporate a start pitch lock which may prevent propeller feathering below a given propeller speed.

5. In accordance with JAR-P 10(c), the MTV-27-2-()-C-F-R(P) / ()265-417 propeller has received a Preliminary Approval under reference P-EASA.P.C.01007. The full compliance of this propeller has yet to be demonstrated with JAR-P 60(b), JAR-P 160(b), JAR-P 190, and JAR-P 220. The MTV-27-2 propeller model is defined by a main assembly drawing and associated parts list:
 MTV-27-2-(*1)-C-F-R(P) “Constant Speed, Feather, Reverse (System Pratt & Whitney)”:
 Drawing No. P-955-A dated 15 February 2006 (*2)
 Parts List No. S-164-A dated 16 February 2006 (*2)

 Note:
 (*1) Three versions of hub flanges are available:
 - E = ARP 880
 - N = BCD 5.125 in, twelve 9/16"-18 UNF studs, two dowels
 - H = Similar to N except for dowel location
 (*2) Or later approved revision. Following a revision, the Drawing No. or the Parts List No. includes the corresponding revision letter, e.g. from P-955-A in P-955-B.

The MTV-27-2 propeller ratings are:

<table>
<thead>
<tr>
<th>Diameter (cm)</th>
<th>Max. Take Off Power Max. Continuous (kW)</th>
<th>Max. Take Off Speed Max. Continuous (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTV-27-2-()</td>
<td>190 to 265</td>
<td>954</td>
</tr>
</tbody>
</table>

6. EASA Type Certificate and Type Certification Data Sheet No. P.104 replaces LBA-Germany Type Certificate and Type Certification Data Sheet No. 32.130/102.
7. Propeller designation system:

<table>
<thead>
<tr>
<th>Hub</th>
<th>/</th>
<th>Blade</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT</td>
<td>V - 27 - (1 or 2) () () () () ()</td>
<td>/</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Hub

1 MT-Propeller Entwicklung GmbH
2 Variable pitch propeller
3 Identification of propeller type
4 Letter code for flange type:
 - E = ARP 880
 - N = BCD 5.125 in, twelve 9/16”-18 UNF studs, two dowels
 - H = Similar to N except for dowel location
5 Letter code for counterweights:
 - blank: no or small counterweights for pitch change forces to decrease pitch
 - C = counterweights for pitch change forces to increase pitch
6 Letter code for feather provision:
 - blank: no feather position possible
 - F = feather position allowed
7 Letter code for reverse provision:
 - blank: no feather position possible
 - R = reverse position allowed
8 Letter code for reversing system:
 - G = System Garrett
 - M = System Mühlbauer
 - P = System Pratt & Whitney
 - W = System Walter
9 Letter code for hub design changes:
 - small letter for changes which do not affect interchangeability
 - capital letter for changes which affect interchangeability
Blade

1. Letter code for position of pitch change pin:
 - blank: pin position for pitch change forces to decrease pitch
 - C = pin position for pitch change forces to increase pitch
 - CF = pin position to allow feather; pitch change forces to increase pitch
 - CR = pin position to allow reverse; pitch change forces to increase pitch
 - CFR = pin position to feather and reverse; pitch change forces to increase pitch

2. Letter code for blade installation and direction of rotation:
 - blank: right-hand tractor
 - RD = right-hand pusher
 - L = left-hand tractor
 - LD = left-hand pusher

3. Propeller diameter in cm

4. Identification of blade design

5. Letter code for blade design changes:
 - small letter for changes which do not affect interchangeability of blade set
 - capital letter for changes which affect interchangeability of blade set
